RealFormer: Transformer Likes Residual Attention

Authors: Ruining He, Anirudh Ravula, Bhargav Kanagal, Joshua Ainslie

Julia Fischer

Motivation

Motivation

- Transformer models are the backbone of NLP models like
 - * BERT (**B**idirectional **E**ncoder **R**epresentations from **T**ransformers)

- * GPT (Generative Pre-Trained Transformer)
- self-supervised learning
- fine-tuning models for specific task

Transformer

Standard Transformer

- proposed by Vaswani et al. 2017
- consists of encoder and decoder
- 2 sub-layers inside each layer of a Transformer encoder/ decoder
 - 1. Multi-Head Attention module: compute output embeddings of a set of queries
 - 2. fully-connected Feed-Forward Network module with one hidden layer

Figure 1: Comparison of (a) Post-LN layer and (b) Pre-LN layer in Transformer encoders; Image taken from He et al. 2020

RealFormer

Architecture

Figure 2: Comparison of (a) Post-LN layer and (c) RealFormer layer in Transformer encoders; Image taken from He et al. 2020

Residual Attention Layer Transformer

Advantages:

- implementation adds only a few lines to the code of the backbone
- no additional parameters
- straightforward application for Transformer variations

Disadvantages:

might be sub-optimal for very deep networks

Experiments

BERT

BERT model

- proposed by Devlin et al. 2019
- setup based on official BERT repository
- compare 3 Transformer architectures on wide spectrum of sizes

Model	#layers	h.s.	#heads	i.s.	#param
BERT-Small	4	512	8	2048	30M
BERT-Base	12	768	12	3072	110M
BERT-Large	24	1024	16	4096	340M
BERT-xLarge	36	1536	24	6144	1B

Table 1: Model architecture for BERT. h.s.:hidden size, i.s.: intermediate size; the number of parameters is approximated; Adopted from He et al. 2020

Evaluation of pre-trained Models

Model	Post-LN	Pre-LN	RealFormer
BERT-Small	61.57%	61.67%	61.70%
BERT-Base	70.20%	69.74%	70.42%
BERT-Large	73.64%	73.21%	73.94%
BERT-xLarge	73.72%	73.53%	74.76%

Table 2: Masked Language Modeling (MLM) accuracy from the pre-trained models on the randomly held-out development set after pre-training 1M steps; Adopted from He et al. 2020

Pre-training curves

Figure 3: Development set MLM accuracy; Image taken from He et al. 2020

GLUE

Task	Post-LN	Pre-LN	RealFormer
MNLI-m	85.96 ± 0.11	$85.03{\scriptstyle\pm0.12}$	$86.28{\scriptstyle \pm 0.14}$
MNLI-nm	85.98 ± 0.14	$85.05{\scriptstyle\pm0.19}$	$86.34{\scriptstyle \pm 0.30}$
QQP	$91.29{\scriptstyle\pm0.10}$	$91.29{\scriptstyle\pm0.16}$	$91.34{\scriptstyle \pm 0.03}$
$QQP\left(F1 ight)$	$88.34{\scriptstyle \pm 0.15}$	$88.33{\scriptstyle \pm 0.26}$	88.28 ± 0.08
QNLI	$92.26{\scriptstyle\pm0.15}$	$92.35{\scriptstyle \pm 0.26}$	$91.89{\scriptstyle \pm 0.17}$
SST-2	$92.89{\scriptstyle\pm0.17}$	$93.81{\scriptstyle\pm0.13}$	$94.04{\scriptstyle\pm0.24}$
CoLA (MC)	$58.85{\scriptstyle\pm1.31}$	$58.04{\scriptstyle\pm1.50}$	$59.83{\scriptstyle \pm 1.06}$
$STS\text{-}B \ (\text{PC})$	$90.08{\scriptstyle \pm 0.27}$	$90.06{\scriptstyle \pm 0.33}$	$90.11{\scriptstyle \pm 0.56}$
STS-B (SC)	$89.77{\scriptstyle\pm 0.26}$	$89.62{\scriptstyle \pm 0.28}$	$89.88{\scriptstyle \pm 0.54}$
MRPC	$87.50{\scriptstyle \pm 0.67}$	$86.76{\scriptstyle\pm 5.64}$	87.01 ± 0.91
MRPC (F1)	$91.16{\scriptstyle \pm 0.45}$	$90.69{\scriptstyle\pm3.16}$	$90.91{\scriptstyle\pm0.65}$
RTE	71.12±2.52	$68.59{\scriptstyle\pm1.52}$	$73.65{\scriptstyle\pm0.90}$
Overall	84.01	83.47	84.53

Figure 4: GLUE development set results of fine-tuning BERT-Large models. All numbers are scaled by 100. Numbers in smaller font are standard deviations; Taken from He et al. 2020

SQuAD

SQuAD	Public	Post-LN	Pre-LN	RealFormer
v1.1 (F1)	90.9	91.68 ± 0.12	$91.06 \pm \textbf{0.09}$	91.93 ± 0.12
v1.1 (EM)	84.1	$85.15 {\ \pm 0.13}$	$83.98 \pm \textbf{0.24}$	85.58 ± 0.15
v2.0 (F1)	81.9	$82.51 \pm $	80.30 ± 0.12	$\textbf{82.93}~\pm~0.05$
v2.0 (EM)	78.7	$79.57 \pm $	$77.35 {\ \pm 0.16}$	$\textbf{79.95}~\pm~0.08$

Table 3: SQuAD development set results of fine-tuning BERT-Large models. All numbers are scaled by 100. Numbers in smaller font are standard deviations. Public: Post-LN results from Devlin et al. 2019; Adopted from He et al. 2020

How well does RealFormer perform with half the pre-training budget?

Tack	Post-LN Post-LN		RealFormer
Idsk	(500K)	(1M)	(500K)
GLUE	83.84	84.01	84.34
v1.1 (F1)	$91.49{\scriptstyle~\pm~0.18}$	91.68 ± 0.12	$91.56 \pm \textbf{0.09}$
v1.1 (EM)	84.87 ± 0.24	$85.15 \pm \textbf{0.13}$	$85.06 \pm \scriptstyle 0.12$
v2.0 (F1)	81.44 ± 0.50	$82.51 \pm $	82.52 ± 0.55
v2.0 (EM)	$78.64 {\pm 0.48}$	79.57 ± 0.12	$79.54 \pm 0.54 $
Overall	83.97	84.37	84.51

Table 4: Downstream development set results of finetuning BERT-Large with Post-LN and RealFormer pretrained with different number of steps. All numbers are scaled by 100. Numbers in smaller font are standard deviations; Adopted from He et al. 2020

Does a larger learning rate help?

Figure 5: Development set MLM accuracy of BERTLarge with different learning rates; Image taken from He et al. 2020

≣ > √Q (~

• • • • • • • • • •

Is attention sparser in RealFormer?

Figure 6: Distribution of entropies of the attention probabilities using the pre-trained BERT-Base with **RealFormer**. RED (median > 4.5), YELLOW ($1.5 \le \text{median} \le 4.5$), BLUE (median < 1.5), i.e., colder colors mean sparser attention; Image taken from He et al. 2020

Is attention sparser in RealFormer?

Figure 7: Distribution of entropies of the attention probabilities using the pre-trained BERT-Base with **Post-LN**; Image taken from He et al. 2020

• • • • • • • •

Ē

1

> 20 C

-

Is attention sparser in RealFormer?

Figure 8: Distribution of entropies of the attention probabilities using the pre-trained BERT-Base with **Pre-LN**; Image taken from He et al. 2020 э

< < > < <</>

> 20 C

Do attention heads in layer L resemble those in layer L - 1?

Figure 9: Distribution of JSD of attention probabilities in (vertically) adjacent attention heads using the pre-trained BERT-Base with **RealFormer** Transformer. Colder color means more "similar" attention heads across adjacent layers; Image taken from He et al. 2020

Do attention heads in layer L resemble those in layer L - 1?

(b) Post-LN

Figure 10: Distribution of JSD of attention probabilities in (vertically) adjacent attention heads using the pre-trained BERT-Base with **Post-LN** Transformer; Image taken from He et al. 2020

・ロト・団ト・ヨー・ヨー・ロト

Is residual attention really necessary?

Dropout	Post-LN	Pre-LN	RealFormer
0%	71.16%	69.80%	71.30%
10%	73.64%	73.21%	73.94%
20%	73.21%	72.97%	73.66%

Table 5: Development set MLM accuracy of BERT-Large with different dropout rates; Adopted from He et al. 2020

ADMIN

Adaptive Model Initialization

- proposed by Liu et al. 2020
- state-of-the-art Neural Machine Translation model
- ADMIN adopts Post-LN as backbone
- compare with RealFormer with running mean
- use 2 NMT benchmarks: WMT'14 En-De and WMT'14 En-Fr

(ロ)

 training setup from Liu et al. 2020 given in the official ADMIN repository

Result

		En-De		E	n-Fr
woder	6L-6L	6L 12L-12L 1	18L-18L	6L-6L	60L-12L
Post-LN	27.80	failed	failed	41.29	failed
Pre-LN	27.27	28.26	28.38	40.74	43.10
ADMIN	27.90	28.58	29.03	41.47	43.80
ADMIN*	28.06	28.85	29.11	41.65	43.72
Ours	28.17	29.06	29.35	41.92	43.97

Table 6: Test set BLEU scores on two WMT'14 benchmarks using different sizes of models. xL-yL: #Encoder layers-#Decoder layers. First three rows are from Liu et al. 2020. Ours is switching the backbone of ADMIN from Post-LN to RealFormer. *: Our run of ADMIN using the same setups as RealFormer; Adopted from He et al. 2020

ETC

Extended Transformer Construction

- recent sparse attention mechanism to handle long context
- proposed by Ainslie et al. 2020 and Zaheer et al. 2020
- state-of-the-art results on 4 NL benchmarks

	Instances		Instance	e length
Datasets	Training	Dev	Median	Max
NQ	307373	7830	4004	156551
HotpotQA	90447	7405	1227	3560
WikiHop	43738	5129	1541	20337
OpenKP	133724	6610	761	89183

Table 7: Statistics of the datasets adopted from Ainslie et al. 2020. Length in word piece tokens

- experiments based on GitHub ETC repository
- use ETC-Large model (24 layers, 1024 hidden size, 16 heads)

Result

Task	Metric	ETC-Large	Ours
WikiHop	Accuracy	78.92 ± 0.14	$\textbf{79.21} \pm \textbf{0.38}$
	Ans. F1	80.38 ± 0.13	80.86 ± 0.16
HotpotQA	Sup. F1	89.07 ± 0.06	89.21 ± 0.12
	Joint F1	73.12 ±0.19	$\textbf{73.57}~\pm~0.19$
Natural	Long Ans. F1	77.70 ± 0.15	$\textbf{77.93} \pm \textbf{0.31}$
Questions	Short Ans. F1	58.54 ± 0.41	$\textbf{59.10} \pm \textbf{0.81}$
QUESCIONS	Average F1	68.07 ± 0.17	$\textbf{68.51}~\pm~0.56$
OpenKP	F1@3	44.06 ± 0.08	$\textbf{44.27} \pm 0.08$

Table 8: Performance on the development set. All numbers are scaled by 100. Numbers in smaller font are standard deviations; Adopted from He et al. 2020

WikiHop leaderboard

WikiHop

#	Model / Reference	Affiliation	Date	Accuracy[%]
1	RealFormer-large (single)	[anonymized]	January 2021	84.4
2	ETC-large (single)	[anonymized]	May 2020	82.3
3	Longformer (single)	AI2	March 2020	81.9
4	Path-based GCN (ensemble)	Zhejiang University (ZJU)	September 2019	78.3
5	Chen et al. (2019)	UT Austin	September 2019	76.5
6	QIT (ensemble)	[anonymized]	March 2023	76.5
7	ChainEx (single)	[anonymized]	May 2019	74.9
8	JDReader (ensemble)	JD AI Research	March 2019	74.3

Figure 11: WikiHop leaderboard

< □ > < ⊡ > < ⊡ > < Ξ > Ξ

< ≣ > ∽) < (~

Conclusion

Take Home Message

• RealFormer: simple, generic and cost-effective technique

- Proven improvement in tasks like:
 - * Masked Language Modeling
 - * Neural Machine Translation
 - ⋆ Long document modeling
- Results in sparser attention:
 - * Within individual heads
 - $\star\,$ Across heads in adjacent layers

References I

- Ainslie, Joshua et al. (2020). "ETC: Encoding long and structured inputs in transformers". In: *arXiv preprint arXiv:2004.08483*.
- Devlin, Jacob et al. (June 2019). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Ed. by Jill Burstein, Christy Doran, and Thamar Solorio. Minneapolis, Minnesota: Association for Computational Linguistics, pp. 4171–4186.
 Ha. Duining et al. (2020). "Deelformery Transformer likes
 - He, Ruining et al. (2020). "Realformer: Transformer likes residual attention". In: *arXiv preprint arXiv:2012.11747*.

References II

- Liu, Liyuan et al. (Nov. 2020). "Understanding the Difficulty of Training Transformers". In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Ed. by Bonnie Webber et al. Online: Association for Computational Linguistics, pp. 5747–5763.
- Vaswani, Ashish et al. (2017). "Attention is all you need". In: arXiv preprint arXiv:1706.03762.
- Zaheer, Manzil et al. (2020). "Big bird: Transformers for longer sequences". In: Advances in neural information processing systems 33, pp. 17283–17297.

< (回)< (回)< (回)< (回)< (回)< (回)< ((u)< ((u

Thank you for listening! Do you have any questions?