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Why are interpretable models important?

Transparency:
Increase trust in modern healthcare
Regulation require transparency in decision-making

Decision Support:
Diagnosis (image diagnosis via MRT or CT)

Bias Detection:
Uncover biases in data



GAM
(Generalized Additive Models)
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Intention of GAM

• Extend traditional linear regression and the linear logistic model

• GAM‘s replace linear combination of predictors with a sum of smooth, 
non-parametric functions

• Allowing to uncover non-linear covariate effects



GAMIntroduction NODE NODE-GAM Comparison ConclusionNAM

How GAM work?

• Modeling relationship between target variable and each predictor as an 
additive

• Smooth functions can be estimated by different techniques
• Initially a local scoring algorithm using scatterplot smoother
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Benefits and Drawbacks

Benefits

• Model complex, non-linear 
relationship without pre-
specifying form of relationship

• Predictors effect are modelled 
separately
• Easier interpretation of results and 

predictors effects

Drawbacks

• Estimating smooth functions can 
be computationally intensive



NAM
(Neural Additive Models)
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Intention of NAM

• Combine Neural Networks (NN) with interpretable approaches

• Retain flexibility and scalability of NN to learn non-linear, complex 
relationships in data with efficient training

• GAM tend to over regularize and miss genuine details in real data

• Enable NN for high-stakes applications (e.g. healthcare)
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How NAM work?

• GAM use local score functions 𝑠𝑗 𝑋𝑗  to predict the contribution of each 
predictor separately

• Use NN to model each predictors contribution separately
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Benefits and Drawbacks

Benefits

• Retain flexibility of NN, capturing 
non-linear, complex relationships

• Improve performance compared 
to GAM

• Efficient training with GPUs

Drawbacks

• Increased model complexity due 
to NN nature

• NN are flexible but tend to overfit



NODE
(Neural Oblivious Decision Ensembles)
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Intention of NODE

• Overcome limitations of DNN on tabular data

• Gradient-Boosted Decision Trees (GDBT) often perform better on tabular 
data compared to DNN

• NODE combines layer architecture of DNN and decision trees aiming to 
keep differentiability and robustness
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How NODE work?

• Oblivious Decision Trees (ODT) split data sharing the predictors and 
thresholds across all internal nodes of the same depth

• NODE consists of differentiable ODT that are trained end-to-end by 
backpropagation

* https://doi.org/10.48550/arXiv.1909.06312

https://doi.org/10.48550/arXiv.1909.06312
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Benefits and Drawbacks

Benefits

• Great performance on tabular 
data

• Differentiable

• End-to-end training

Drawbacks

• Computationally more expensive 
compared to other state-of-the-art 
approaches

• Lack of interpretability since 
interactions between features



NODE-GAM
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Intention of NODE-GAM

• Combine interpretability of GAM, differentiability of NN, and robustness 
of Oblivious Decision Trees (ODT)

• Enforce no interaction of predictors between tree connections
• NODE-GA²M is an extension that allows interaction between at most 2 predictors 

to interact within each tree



GAMIntroduction NODE NODE-GAM Comparison ConclusionNAM

How NODE-GAM work?

• Integrates the architecture of NODE with additive structure of GAM
• Each neural layer consists of multiple differentiable ODT

• A single ODT takes only one predictor as input

• Output of previous ODT are given to an ODT in the leading neural layer as 
well as the model input

• Output of all layers/ODT are weighted and summed up to final model 
output
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How NODE-GAM work?

* https://doi.org/10.48550/arXiv.2106.01613

https://doi.org/10.48550/arXiv.2106.01613
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What do insights by NODE-GAM look like?
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* https://doi.org/10.48550/arXiv.2106.01613

https://doi.org/10.48550/arXiv.2106.01613


Comparison
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Comparison

Classification

• NODE-GAM and NODE-GA²M are 
competitive, often matching or 
exceeding performance of other 
GAMs and Full Complexity models

• Perform better on datasets with less 
lab

• Improves performance on large 
datasets

Regression

• NODE-GAM and NODE-GA²M are not 
as competitive as on classification 
datasets

• Gets beaten by Random Forests and 
NODE significantly



Conclusion
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Limitations and Benefits

• GAM show association patterns and not causation
• NODE-GAM and NODE-GA²M are not always a good choice but often

• GAM can answer more questions accurately, resulting in higher 
confidence in explanations

• GAM helps users better to discover patterns and understand importance 
of predictors compared to Decision Trees

• Great tools to discover biases within data to avoid false conclusions



Thank you for listening!



Sources

• Introduction: https://dl.acm.org/doi/pdf/10.1145/3233547.3233667
• GAM: https://www.jstor.org/stable/2245459
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