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Motivation
• Importance of Handling Missing Values in Healthcare Data:

 Common issue in healthcare datasets affecting model accuracy
 Poor handling can lead to biased and unsafe decisions

• Current Methods and Their Limitations:
 Traditional: Mean imputation, deletion assume MCAR—rarely true
 Advanced: MissForest, KNN can create biases, reducing interpretability

• Need for Interpretable Machine Learning:
 EBMs offer insights into missingness, unlike black-box models
 Helps identify risks and biases from imputation methods

• Research Objective:
 Explore how interpretable models improve handling of missing data and enhance 

transparency in healthcare



Related Work
• Critique of Existing Imputation Methods:

 Generative Methods: Criticized for relying on untestable data distribution 
assumptions

 Discriminative Methods: Performance varies with data type and missingness 
pattern (e.g., MissForest, KNN, MICE)

• Connections Between Imputation and Causal Inference:
 Assumptions: Both "unconfoundedness" in causal inference and "missing at 

random" (MAR) in imputation are based on untestable assumptions

• Use of Explainability Techniques:
 Studies use explainability to find dataset issues (e.g., spurious correlations, 

mislabeled data)
 The paper used EBMs, not black-box models, for missing value issues



Related Work
• Comparisons with Automated Data Cleaning Tools:

 Tools like Automatic Statistician and AlphaClean handle missing values 
automatically

 The study focused on understanding and mitigating missing data 
impacts, not just automatic correction



Types of Missing Values
• Missing Completely At Random (MCAR):

 Missingness unrelated to any data (observed or unobserved)
 Same probability of missing data for all cases
 Example: Respondent accidentally skips a survey question

• Missing At Random (MAR):
 Missingness related to observed data, not missing data itself
 Can be predicted from other variables
 Example: Older respondents more likely to have missing income data, but not 

related to income level



Types of Missing Values
• Missing Not At Random (MNAR):

 Missingness related to unobserved data
 Caused by factors not captured in observed data
 Example: Higher earners may not report income, making missingness 

dependent on income value



Missing Value Imputation
• MissForest:

 Starts with mean/mode imputation
 Uses random forest to iteratively predict missing features
 Continues until values converge
 Captures non-linear relationships and feature interactions

• K-Nearest Neighbors (KNN) Imputation:
 Imputes based on the mean of the K nearest neighbors
 Calculates distances using non-missing features
 Fast and accurate but requires careful tuning of parameters
 Effective when similar samples are expected to have similar missing values



Explainable Boosting Machines 
(EBMs)
• Based on Generalized Additive Models (GAMs)

• GAMs model the target as a sum of shape functions for each feature

• Advantages of EBMs Over Traditional GAMs:
 Traditional GAMs use splines with smoothness constraints
 EBMs use ensembles of boosted, depth-restricted trees, enhancing 

performance 
 Provide better representation and capture details more accurately



Image Source: https://mfasiolo.github.io/mgcViz/reference/plot.gamViz.html



Explainable Boosting Machines 
(EBMs)

Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



Testing for Missing Completely At 
Random (MCAR) Using EBM
• Standard Tests for MCAR:

 Common tests include Little's test
 Provide a statistical basis to determine if data is missing completely at 

random (MCAR)

• Proposed Method Using EBMs:
 New method to test for MCAR using EBM shape functions
 Utilizes EBM's visual interpretability to detect MCAR patterns from shape 

function plots

• Benefits of the EBM Approach:
 Improves interpretability and understanding of missingness
 Detects subtle patterns and interactions indicating if data is MCAR or 

otherwise



Testing for Missing Completely At 
Random (MCAR) Using EBM
• How the EBM Approach Works:

 Assign a unique value to missing data (e.g., -1 or separate category)
 EBM shape functions split values into bins, each with a prediction score
 EBM shape function shows contribution of feature values, including missing 

data, to predictions
 If missingness is MCAR all samples are missing with the same probability
 Expected score of the bins should be 0
 Wald test is used for the p-value



Testing for Missing Completely At 
Random (MCAR) Using EBM

Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



Missing Values in Healthcare
• Common Missing Data Patterns in Healthcare:

 Lab results may not be recorded if considered "normal“
 Measurements within normal range might be omitted, focusing on abnormal 

findings

Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



Predicting Missingness
• Understanding Missing Data Beyond MCAR:

 Most missing values are not Missing Completely At Random (MCAR)
 Distinguishing between MNAR (Missing Not At Random) and MAR (Missing At 

Random) is key for effective handling

• Using EBMs to Predict Missingness:
 EBMs predict missingness by using observed variables to infer the 

missingness of another variable
 Uses a missingness indicator (0-1) as the target, with other features as inputs 

(including the target)



MAR

Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



MNAR

Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



Missing Values in Healthcare
• Visualization of Missingness Contributions:

 EBMs allow visualization of how different feature values contribute to the 
missingness of a specific variable

Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023
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Detecting and avoiding risks
• Common Practice of Missing Value Imputation:

 Widely used due to models' inability to handle missing data
 Techniques: mean, median imputation, unique values (e.g., 0, -99), advanced 

methods like MissForest

• Risks Associated with Mean Imputation:
 Mean imputation is one of the most common methods 
 problematic if missing data differs from non-missing data
 does not significantly affect model accuracy but poses a risk of 

underestimating the risk for patients



Detecting and avoiding risks
• Challenges with Mean Imputation:

 Mean imputation can obscure key data distinctions, leading to misleading 
predictions

 Difficult to edit models effectively as it aligns low-risk (missing) and high-
risk (actual) groups at the same point

Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



Imputation with Advanced 
Methods

Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023



Conclusion
• Key Contributions:

 Testing for MCAR: Developed an EBM-based method to determine if data is 
Missing Completely At Random (MCAR)

 Identifying Assumed Normal Values: EBM shape functions detect missing 
values due to normality assumptions, clarifying missingness mechanisms

 Predicting Missingness: EBMs predict missingness of features using 
observed data, enhancing interpretability

 Automatic Detection of Harmful Imputations: EBMs identify harmful 
imputations (e.g., mean, median)

 Advanced Imputation Methods: Visualization with EBMs assesses the 
impact of advanced methods (e.g., MissForest, KNN) on performance and 
reveals subtle issues



Conclusion
• Impact and Future Directions:

 Provides a robust framework for handling missing data in healthcare, 
enhancing model reliability and safety

 Future research may explore more interpretability techniques to improve data 
handling and model performance across domains



Questions?
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