Missing Values and Imputation in Healthcare Data: Can Interpretable Machine Learning Help?

Written by Zhi Chen, Sarah Tan, Urszula Chajewska, Cynthia Rudin, Rich Caruana

Overview

- Motivation
- Related Work
- Definitions
- Testing for MCAR Using EBM
- Missing Values in Healthcare
- Imputation of Missing Values
- Conclusion

Motivation

Importance of Handling Missing Values in Healthcare Data:

- Common issue in healthcare datasets affecting model accuracy
- · Poor handling can lead to biased and unsafe decisions

Current Methods and Their Limitations:

- Traditional: Mean imputation, deletion assume MCAR—rarely true
- · Advanced: MissForest, KNN can create biases, reducing interpretability

Need for Interpretable Machine Learning:

- EBMs offer insights into missingness, unlike black-box models
- Helps identify risks and biases from imputation methods

Research Objective:

• Explore how interpretable models improve handling of missing data and enhance transparency in healthcare

Related Work

- Critique of Existing Imputation Methods:
 - Generative Methods: Criticized for relying on untestable data distribution
 assumptions
 - **Discriminative Methods**: Performance varies with data type and missingness pattern (e.g., MissForest, KNN, MICE)
- Connections Between Imputation and Causal Inference:
 - **Assumptions**: Both "unconfoundedness" in causal inference and "missing at random" (MAR) in imputation are based on untestable assumptions
- Use of Explainability Techniques:
 - Studies use explainability to find dataset issues (e.g., spurious correlations, mislabeled data)
 - The paper used EBMs, not black-box models, for missing value issues

Related Work

- Comparisons with Automated Data Cleaning Tools:
 - Tools like Automatic Statistician and AlphaClean handle missing values automatically
 - The study focused on understanding and mitigating missing data impacts, not just automatic correction

Types of Missing Values

- Missing Completely At Random (MCAR):
 - Missingness unrelated to any data (observed or unobserved)
 - Same probability of missing data for all cases
 - *Example*: Respondent accidentally skips a survey question

• Missing At Random (MAR):

- Missingness related to observed data, not missing data itself
- Can be predicted from other variables
- *Example*: Older respondents more likely to have missing income data, but not related to income level

Types of Missing Values

- Missing Not At Random (MNAR):
 - Missingness related to unobserved data
 - · Caused by factors not captured in observed data
 - *Example*: Higher earners may not report income, making missingness dependent on income value

Missing Value Imputation

• MissForest:

- Starts with mean/mode imputation
- Uses random forest to iteratively predict missing features
- Continues until values converge
- Captures non-linear relationships and feature interactions

• K-Nearest Neighbors (KNN) Imputation:

- Imputes based on the mean of the K nearest neighbors
- Calculates distances using non-missing features
- Fast and accurate but requires careful tuning of parameters
- Effective when similar samples are expected to have similar missing values

Explainable Boosting Machines (EBMs)

- Based on Generalized Additive Models (GAMs)
- GAMs model the target as a sum of shape functions for each feature
- Advantages of EBMs Over Traditional GAMs:
 - Traditional GAMs use splines with smoothness constraints
 - EBMs use ensembles of boosted, depth-restricted trees, enhancing performance
 - Provide better representation and capture details more accurately

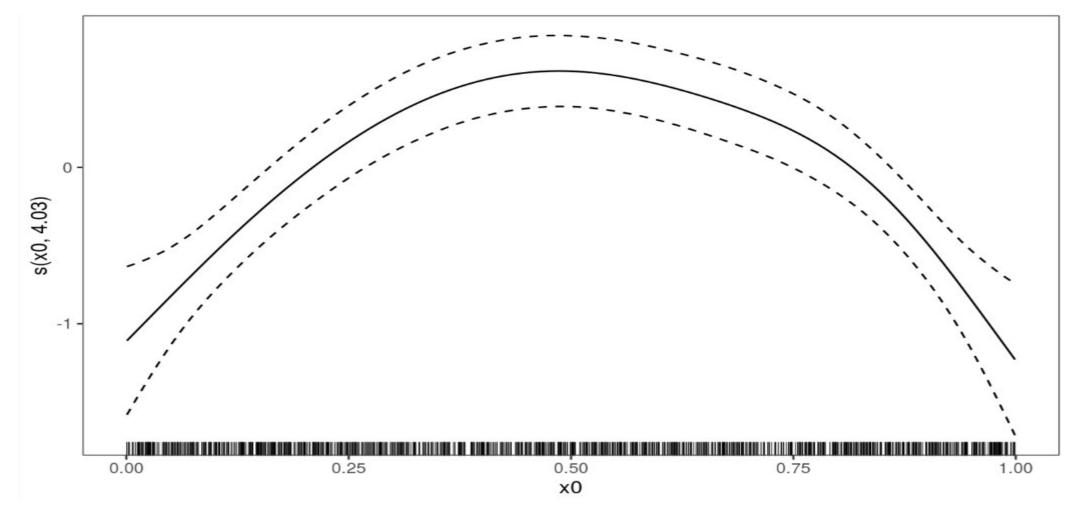


Image Source: https://mfasiolo.github.io/mgcViz/reference/plot.gamViz.html

Explainable Boosting Machines (EBMs)

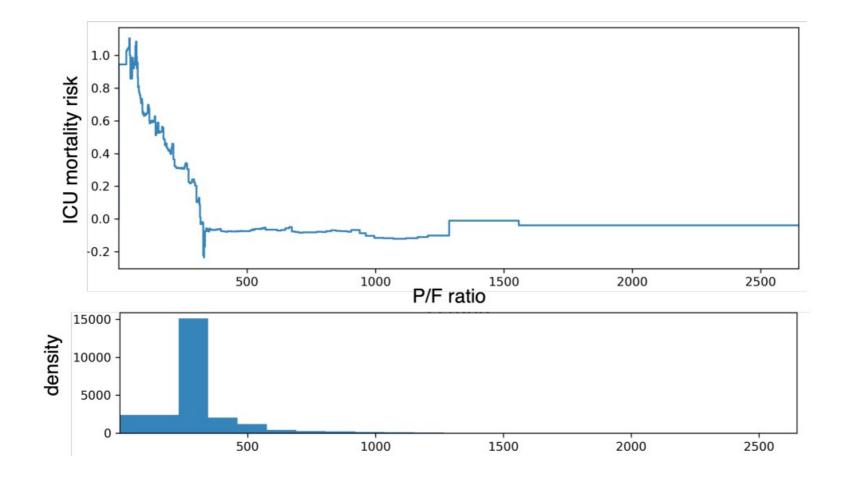


Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023

Testing for Missing Completely At Random (MCAR) Using EBM

• Standard Tests for MCAR:

- Common tests include Little's test
- Provide a statistical basis to determine if data is missing completely at random (MCAR)

• Proposed Method Using EBMs:

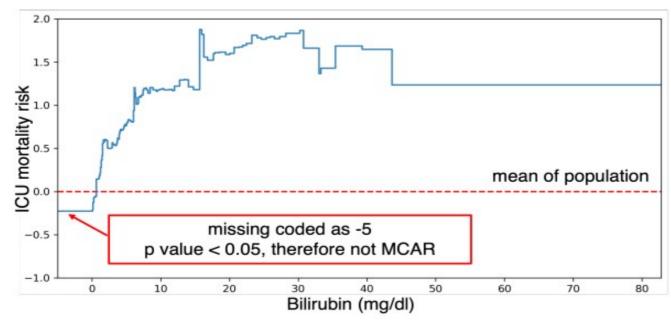
- New method to test for MCAR using EBM shape functions
- Utilizes EBM's visual interpretability to detect MCAR patterns from shape function plots
- Benefits of the EBM Approach:
 - Improves interpretability and understanding of missingness
 - Detects subtle patterns and interactions indicating if data is MCAR or otherwise

Testing for Missing Completely At Random (MCAR) Using EBM

• How the EBM Approach Works:

- Assign a unique value to missing data (e.g., -1 or separate category)
- EBM shape functions split values into bins, each with a prediction score
- EBM shape function shows contribution of feature values, including missing data, to predictions
- If missingness is MCAR all samples are missing with the same probability
- Expected score of the bins should be 0
- Wald test is used for the p-value

Testing for Missing Completely At Random (MCAR) Using EBM

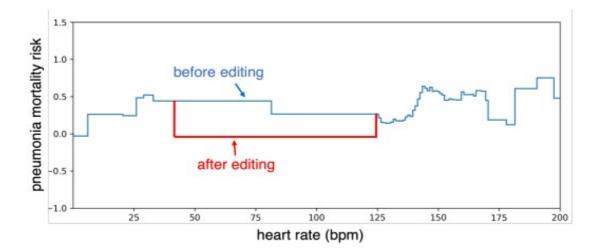


Type	MCAR datasets↓			MAR datasets↑		
p_m	0.1	0.2	0.3	0.1	0.2	0.3
Little's	0.035	0.070	0.055	1.000	1.000	1.000
Ours	0.080	0.005	0.005	0.910	0.885	0.890

Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023

Missing Values in Healthcare

- Common Missing Data Patterns in Healthcare:
 - · Lab results may not be recorded if considered "normal"
 - Measurements within normal range might be omitted, focusing on abnormal findings



Predicting Missingness

- Understanding Missing Data Beyond MCAR:
 - Most missing values are not Missing Completely At Random (MCAR)
 - Distinguishing between MNAR (Missing Not At Random) and MAR (Missing At Random) is key for effective handling

• Using EBMs to Predict Missingness:

- EBMs predict missingness by using observed variables to infer the missingness of another variable
- Uses a missingness indicator (0-1) as the target, with other features as inputs (including the target)

MAR

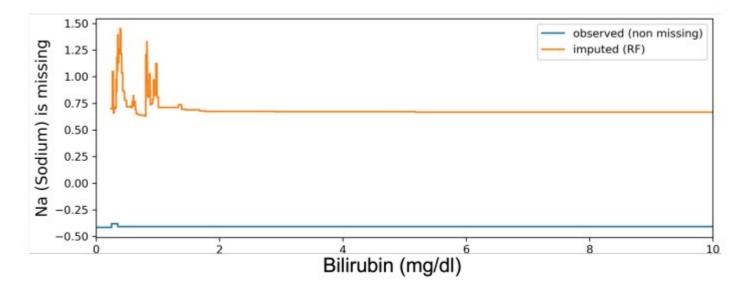
model	p_m	linear	curvilinear	quadratic
LR	0.1	$0.954{\pm}0.014$	0.902 ± 0.016	$0.883 {\pm} 0.02$
RF		$0.943 {\pm} 0.014$	0.946 ± 0.013	$0.883 {\pm} 0.02$
KNN		$0.895 {\pm} 0.013$	0.894 ± 0.009	0.881 ± 0.021
EBM		$0.956 {\pm} 0.015$	$0.959{\pm}0.013$	$0.881 {\pm} 0.02$
LR	0.2	$0.928 {\pm} 0.019$	0.839 ± 0.034	0.815 ± 0.013
RF		$0.911 {\pm} 0.019$	$0.928 {\pm} 0.019$	$0.831{\pm}0.017$
KNN		$0.813 {\pm} 0.024$	$0.81 {\pm} 0.022$	$0.812 {\pm} 0.008$
EBM		$0.930{\pm}0.019$	$0.946{\pm}0.02$	0.822 ± 0.016
LR	0.3	$0.906 {\pm} 0.022$	0.809 ± 0.054	$0.710 {\pm} 0.025$
RF		$0.887 {\pm} 0.021$	0.926 ± 0.019	$0.812{\pm}0.03$
KNN		$0.744 {\pm} 0.032$	0.752 ± 0.042	$0.711 {\pm} 0.016$
EBM		$0.908 {\pm} 0.022$	$0.946{\pm}0.02$	$0.795 {\pm} 0.03$

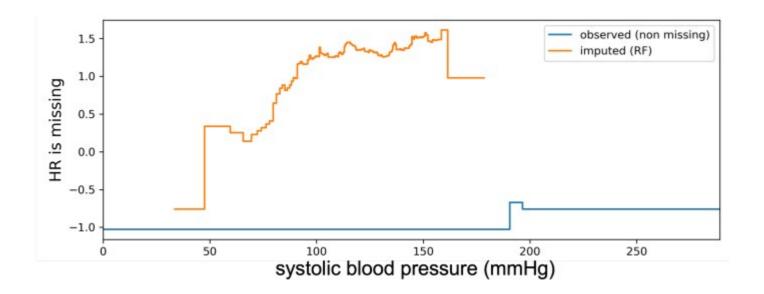
MNAR

model	p_m	linear	curvilinear	quadratic
LR	0.1	$0.957 {\pm} 0.013$	$0.901 {\pm} 0.013$	$0.886{\pm}0.017$
RF		$0.944{\pm}0.013$	$0.948 {\pm} 0.011$	$0.886{\pm}0.017$
KNN		$0.899 {\pm} 0.012$	$0.898 {\pm} 0.01$	$0.885 {\pm} 0.018$
EBM		$0.959{\pm}0.012$	$0.963{\pm}0.011$	$0.885 {\pm} 0.017$
LR	0.2	$0.928 {\pm} 0.018$	$0.847 {\pm} 0.035$	$0.817 {\pm} 0.010$
RF		$0.910 {\pm} 0.016$	$0.933 {\pm} 0.016$	$0.828{\pm}0.012$
KNN		$0.816 {\pm} 0.024$	$0.82{\pm}0.025$	$0.813 {\pm} 0.008$
EBM		$0.931{\pm}0.017$	$0.953{\pm}0.016$	$0.819 {\pm} 0.012$
LR	0.3	$0.914 {\pm} 0.016$	$0.805 {\pm} 0.048$	$0.706 {\pm} 0.024$
RF		$0.891{\pm}0.015$	$0.925 {\pm} 0.015$	$0.811{\pm}0.028$
KNN		$0.760 {\pm} 0.035$	$0.764{\pm}0.039$	$0.711 {\pm} 0.017$
EBM		$0.916{\pm}0.016$	$0.949{\pm}0.015$	$0.789 {\pm} 0.03$

Missing Values in Healthcare

- Visualization of Missingness Contributions:
 - EBMs allow visualization of how different feature values contribute to the missingness of a specific variable





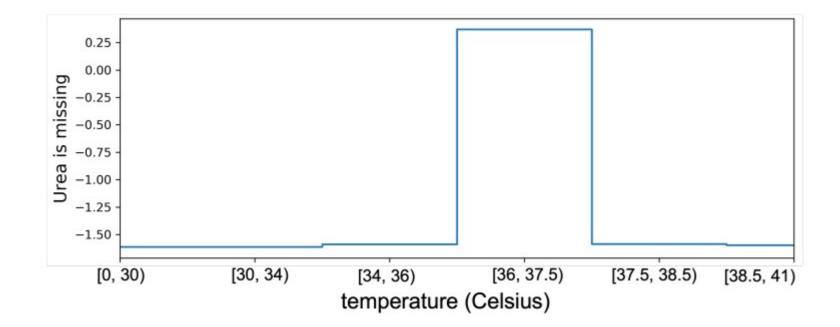


Image source:arXiv:2304.11749v1 [cs.LG] 23 Apr 2023

Detecting and avoiding risks

Common Practice of Missing Value Imputation:

- Widely used due to models' inability to handle missing data
- Techniques: mean, median imputation, unique values (e.g., 0, -99), advanced methods like MissForest

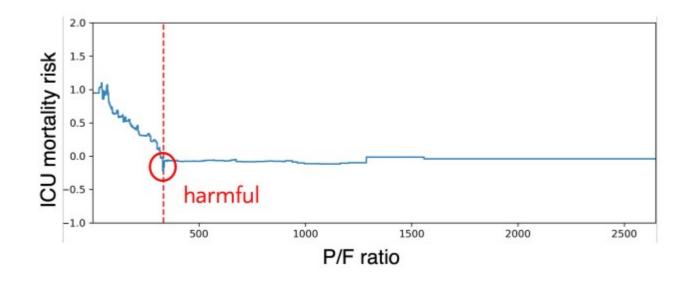
Risks Associated with Mean Imputation:

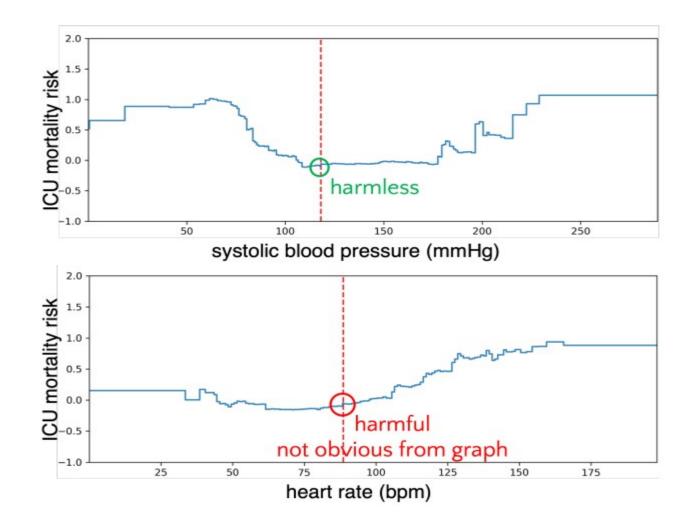
- Mean imputation is one of the most common methods
- problematic if missing data differs from non-missing data
- does not significantly affect model accuracy but poses a risk of underestimating the risk for patients

Detecting and avoiding risks

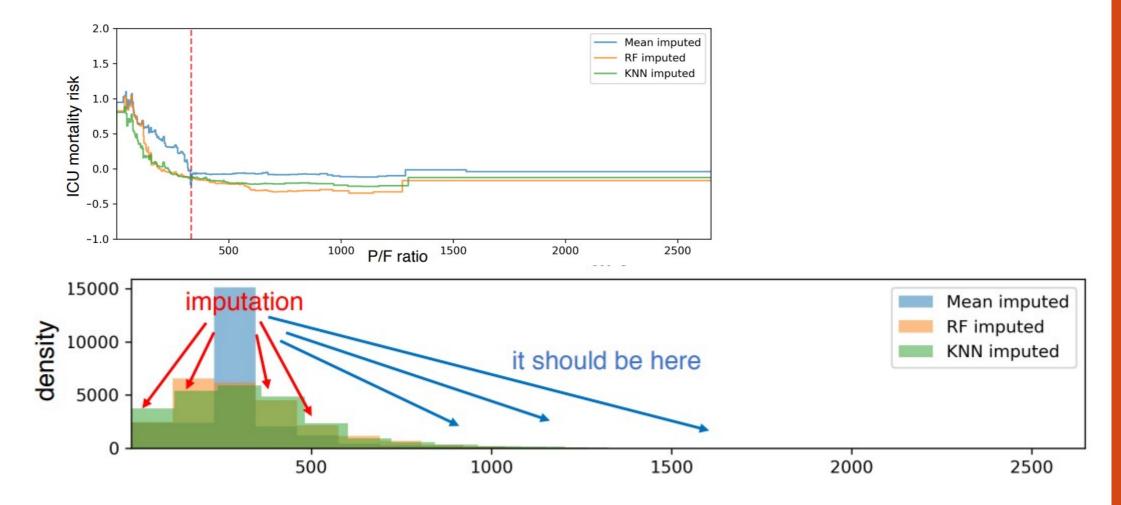
Challenges with Mean Imputation:

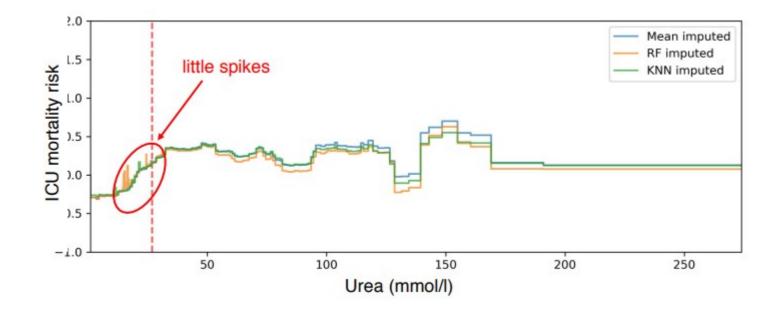
- Mean imputation can obscure key data distinctions, leading to misleading predictions
- Difficult to edit models effectively as it aligns low-risk (missing) and highrisk (actual) groups at the same point





Imputation with Advanced Methods





Conclusion

• Key Contributions:

- **Testing for MCAR**: Developed an EBM-based method to determine if data is Missing Completely At Random (MCAR)
- **Identifying Assumed Normal Values**: EBM shape functions detect missing values due to normality assumptions, clarifying missingness mechanisms
- **Predicting Missingness**: EBMs predict missingness of features using observed data, enhancing interpretability
- Automatic Detection of Harmful Imputations: EBMs identify harmful imputations (e.g., mean, median)
- Advanced Imputation Methods: Visualization with EBMs assesses the impact of advanced methods (e.g., MissForest, KNN) on performance and reveals subtle issues

Conclusion

Impact and Future Directions:

- Provides a robust framework for handling missing data in healthcare, enhancing model reliability and safety
- Future research may explore more interpretability techniques to improve data handling and model performance across domains

Questions?