Presentation by FLORIAN DRÖSSLER
PRESOLUTION
PRESENTATION BY FLORIAN DRÖSSLER
PRESENTATION BY FLORIAN DRÖSSLER HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution

by Eric Nguyen, Michael Poli, Marjan Faizi

Image source: https://africafreak.com/spotted-hyena-facts(last visited: 02.09.2024)

Overview COVETVIEW
•Background Information
•Motivation
•Architecture
•Experiments with the model
•Conclusion

- •Background Information
- •Motivation
- •Architecture
-
-

Background in Genomics

- •DNA sequences carry genetic instructions
- •Sequences consist of chains of nucleotides, represented by the letters A, T, C, and G
- •Understanding relationships between sequences and biological functions is key to advancements
- •BUT: The human genome is about 3.2 billion nucleotides long making it extremely complex
- •DNA contains long-range dependencies, interaction between distant parts can influence gene regulation

02.09.2024)

Convolutional vs Transformer Models

Convolutional: Transformer:

Convolutional layers apply filter to local regions

Convolutional layers apply filter to local regions

Convolutional layers apply filter to local regions
 ◦ Convolutional layers apply filter to local regions **CONVOLUTIONAL VS Transform**

Convolutional:

Fransforme

Fransforme

Fransforme

Finders local patterns

Filters share parameters (weights)

Filters share parameters (weights)

Filters share parameters (weights)

Filte <p>Comvolutional:</p>\n<p>Convolutional layers apply filter to local regions</p>\n<p>" Convolutional layers apply filter to local regions</p>\n<p>" Detects local patterns</p>\n<p>" Filters share parameters (weights)</p>\n<p>" Generally difficult to capture global context</p>\n<p>" Often used in Image processing</p>\n<p>" Other used in Image processing</p>\n<p>" Computational interest</p>\n<p>" Computational interest</p>\n<p>" Computational in Image processing</p>\n<p>" Computational in Image processing</p>\n<p>" of the image processing</p>\n<p>" of the image processing</p>\n<p>" of the image of the image is not a good solution.</p>

Convolutional:

-
-
-
-
-

Transformer:

- <p>• former: </p>\n<p>• Use attention mechanism to process entire input simultaneously</p>\n<p>• Capture global dependencies</p>\n<p>• No parameter sharing -> more flexible</p> simultaneously **Solution Solution Species Controlled S**

Fransformer:

■ Use attention mechanism to process entire input

simultaneously

■ Capture global dependencies

■ No parameter sharing -> more flexible

■ Designed to capture long **SFORMER MODELS**

Fransformer:

○ Use attention mechanism to process entire input

simultaneously

○ Capture global dependencies

● No parameter sharing -> more flexible

● Designed to capture long-range dependencies

■ **• Commission Control Control**
- Capture global dependencies
-
- and global context
- Computational intense
-

Challenges in Genomic Modeling

Traditional genomic models, struggle processing long DNA sequences

• Limits context length to a few thousand tokens at most (typically 512 to 4,096 tokens), < 0.001% of the

humis context l

- •Traditional genomic models, struggle processing long DNA sequences
- Limits context length to a few thousand tokens at most (typically 512 to 4,096 tokens), < 0.001% of the human genome **Challenges in Genomic Modeling**

•Traditional genomic models, struggle processing long DNA sequences

• Limits context length to a few thousand tokens at most (typically 512 to 4,096 tokens), < 0.001% of the

human genome
	- Difficult to model long-range dependencies
- -

- HyenaDNA Motivation

On language H3 and Hyena achieve State of the Art (SotA) performances by

convolutional layers •On language H3 and Hyena achieve State of the Art (SotA) performances by stacking long convolutional layers
- HyenaDNA Motivation

•On language H3 and Hyena achieve State of the Art (SotA) performances by stacking long-

convolutional layers

•HyenaDNA designed to overcome these challenges by enabling long-range genomic sequence modeling at single nucleotide resolution
- •The model aims to extend the capabilities of genomic foundation models, enabling more accurate predictions and analyses in genomics

Model Structure

- **Model Structure**
•HyenaDNA is a decoder-only sequence-to-sequence model
•Core component of the model is the Hyena operator, which
replaces the traditional attention mechanism with a
convolution-based approach replaces the traditional attention mechanism with a convolution-based approach **Model Structure**
•HyenaDNA is a decoder-only sequence-to-sequence model
•Core component of the model is the Hyena operator, which
replaces the traditional attention mechanism with a
convolution-based approach
•Each Hyena
- a feed-forward neural network (MLP). The operator includes:
	- Long Convolutions: parameterized to operate over long sequences, enabling the model to maintain context over extended stretches of DNA.
	- Element-wise Gates: control flow of information within model. The Image source: https://doi.org/10.48550/arXiv.2306.15794 dynamically adjusting importance of different parts of the sequence.

Training Process

- prediction
- **Figure 11 Separate 19 Accord CONA**
•HyenaDNA is pretrained using the human reference genome, focusing on next nucleotide
•Single nucleotide tokenizer, preserving highest possible resolution, crucial for tasks where a
•Sin •Single nucleotide tokenizer, preserving highest possible resolution, crucial for tasks where a single nucleotide difference can be significant
	- Vocabulary is minimal, including the four nucleotides plus special tokens for padding and unknown characters, ensuring the focus remains on the nucleotide-level information
- Fraining Process

•HyenaDNA is pretrained using the human reference genome, focusing on next nucleotide

 prediction

 single nucleotide tokenizer, preserving highest possible resolution, crucial for tasks where a

singl length warm-up technique

Training Process

- **Figure 14**
•This approach allows HyenaDNA to handle sequences up to 1 million tokens effectively, making
it one of the fastest and most scalable genomic models available
•At sequence lengths of 450k tokens and above, this it one of the fastest and most scalable genomic models available
- •At sequence lengths of 450k tokens and above, this approach has been shown to reduce training time by 40% and improve accuracy by 7.5 percentage points on species classification tasks

•Hyena Operator can be evaluated in time $O(L \log_2 L)$

Soft Prompting

- •Novel adaptation technique, which involves injecting learnable tokens (as weights) directly into the input sequence
- •Unlike traditional fine-tuning, soft prompting allows the model to adapt to new tasks by updating only the prompt tokens, keeping the rest of the model fixed
- •This method is highly efficient, requiring fewer computational resources and less training data, making it ideal for quick adaptation to various genomic tasks

Recap

Attention-based models suffer from computational costs as sequence length grows, HyenaDNA scales efficiently, enabling the processing of sequences up extention-based models suffer from computational costs as sequence length
grows, HyenaDNA scales efficiently, enabling the processing of sequences up
to 1 million tokens long
This concessate a 500y increase is context loga to 1 million tokens long Mundelland and models suffer from computational costs as sequence length
grows, HyenaDNA scales efficiently, enabling the processing of sequences up
to 1 million tokens long
This represents a 500x increase in context lengt

MM

This represents a 500x increase in context length over previous genomic single pass

Single Nucleotide Resolution Performance $\begin{array}{lllllllll} \text{Single Nucleotide Resolution} \ \textcolor{red}{\text{PersonicBernants}~\text{Results:}} & \textcolor{red}{\text{GemonicBernants}~\text{Results:}} & \textcolor{red}{\text{GemonicBernants}~\text{Results:}} & \textcolor{red}{\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian}~\text{Gaussian$ **Single Nucleotide Resol**
 Performance
 Performance
 Sugger Security:
 Sugger Security:
 Suggrer Security:
 CONTANCE
 CONTANCE
 CONTANTS
 CONTANTS
 CONTANTS
 CONTANTS
 CONTANTS
 CONTANTS
 CONTANT Formance Mucleotide Resolution
 $\frac{\text{DATAST}}{\text{Neu} \cdot \text{Eb}}$
 $\frac{\text{DATAST}}{\text{Neu} \cdot \text{Eb}}$
 $\frac{\text{VATAST}}{\text{Neu} \cdot \text{Eb}}$

- various tasks related to regulatory element classification and species differentiation
- performance on tasks like human enhancer identification
- nucleotide resolution across entire sequences

Single Nucleotide Resolution Performance **Single Nucleotide Resolution**

Performance

Iucleotide Transformer:

• benchmarked against the Nucleotide Transformer on 18 datasets

• involving tasks like enhancer and promoter identification, as well Enhance

as splic **Single Nucleotide Franchison CE**

Uncleotide Transformer:

• benchmarked against the Nucleotide Transformer on 18 datasets $\frac{H}{H}$ or GesoMES

involving tasks like enhancer and promoter identification, as well $\frac{H}{B}$

•Nucleotide Transformer:

- benchmarked against the Nucleotide Transformer on 18 datasets involving tasks like enhancer and promoter identification, as well as splice site prediction
- parameters (1.6 million compared to 2.5 billion) and much less pretraining data (one genome vs. thousands)
- outperform larger models on complex genomic tasks

In-Context Learning Capabilities:

•Soft Prompting Performance:

• showed that model could adapt to new tasks by simply modifying a small set of learnable prompt

• As more tuneable tokens were added to the input sequences

- tokens, without full model retraining
- note Prompting Performance:

 showed that model could adapt to new tasks by simply modifying a small set of learnable prompt

 Showed that model could adapt to new tasks by simply modifying a small set of learnable promp improved, reaching levels comparable to traditional fine-tuning approaches
- Particularly useful for quickly adapting to tasks with minimal computational overhead, making it an efficient solution for dynamic genomic applications

- (k-shot) for new tasks
- In-Context Learning Capabilities:

•Few-Shot Learning Approach:

 HyenaDNA was tested in a few-shot learning scenario, where it was given a small number of examples

(k-shot) for new tasks

 The model showed that with br • The model showed that with brief tuning, it could effectively learn and apply the concepts needed for accurate classification, even with minimal data
	- This few-shot capability is crucial in genomics, where new and unique tasks frequently arise, and having a model that can quickly adapt is invaluable

Ultra-Long Range Genomics: Utra-Long Range Genomics:

Shromatin Profile Prediction:

• HyenaDNA was applied to the DeepSEA dataset for predicting

• Despite using 5-30 times fewer parameters, HyenaDNA

• Despite using 5-30 times fewer parameters, Hy

•Chromatin Profile Prediction:

- chromatin profiles
- Despite using 5-30 times fewer parameters, HyenaDNA performed competitively with the sparse-attention BigBird model, demonstrating its ability to handle complex, multi-task genomic predictions efficiently

Ultra-Long Range Genomics:

- Visualization and Embedding Analysis:
• HyenaDNA was used to generate embeddings for
sequences corresponding to different biological
functions
• The embeddings produced showed clear clustering
based on biotype annotation sequences corresponding to different biological functions
	- The embeddings produced showed clear clustering based on biotype annotations
	- HyenaDNA was used to generate embedding for
• HyenaDNA was used to generate embeddings for
• sequences corresponding to different biological
• The embeddings produced showed clear clustering
• based on biotype annotation classification tasks, validating its ability as a universal genomic featurizer
	- Learn and represent features across diverse genomic
tasks suggests that HyenaDNA can serve as an **alization and Embedding Analysis:**
HyenaDNA was used to generate embeddings for
sequences corresponding to different biological
functions
The embeddings produced showed clear clustering
based on biotype annotations
HyenaD **effective universal featuration**
 Example 18
 Exam

Ultra-Long Range Genomics:

•Species Classification with Ultra-Long Sequences

- novel species classification task, the model had to determine species origin from five different species, including humans and non-human primates
- improved dramatically, achieving near-perfect accuracy (99.5%) with sequences up to 1 million tokens long
- Capacity to process ultra-long sequences and detect subtle genetic differences that distinguish species is beyond capabilities of transformer models due to infeasible training times

Conclusion

- CONCUSION
•HyenaDNA's innovative architecture allows it to scale efficiently with sequence length, making it
•Ability to adapt to tasks through in-context learning and soft prompting without retraining the
•Ability to adap capable of processing up to 1 million tokens
- •Ability to adapt to tasks through in-context learning and soft prompting without retraining the entire model highlights flexibility and computational efficiency
- •State-of-the-art performance on a variety of genomic tasks, outperforming larger models with far fewer parameters and less pretraining data

Future Directions Future Directions
•Enhance HyenaDNA's generalizability and reduce potential biases,
• Pretraining the model on a more diverse set of genomes
• Extending to incorporate other biological sequences, like proteins and our Coul

-
- •Extending to incorporate other biological sequences, like proteins and drug molecules,
	- Could unlock multi-modal applications
	- Allow for comprehensive modeling of the complex interactions between various biological systems
- •Increasing the model size and leveraging model parallelism could push the boundaries of what Future Directions

Enhance HyenaDNA's generalizability and reduce potential biases,

• Pretraining the model on a more diverse set of genomes

Extending to incorporate other biological sequences, like proteins and drug mol tasks

Any questions?

Image Sources

- •https://africafreak.com/spotted-hyena-facts
- •https://www.ashg.org/discover-genetics/building-blocks/
- •https://doi.org/10.48550/arXiv.2306.15794