Structured Denoising Diffusion Models in Discrete State-Spaces

Written by Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, Rianne van den Berg in Nov 2021

Presentation by: Konrad Breipohl

- What is a Diffusion Model
- Introduction to the Paper
- Core Contributions of the Paper
- Technical implementation
- Results of the paper
- Conclusion
- Q&A

Basics

- A diffusion model is often used for image generation from prompts
- Two processes at work: a noising algorithm (forward process) and a denoising algorithm (reverse process)

Image source: <u>https://doi.org/10.48550/arXiv.2209.00796</u>

What is a Diffusion Model Basics

- The noising and denoising is done iteratively
- Both algorithms are run multiple times over
- Only small amount of noise added each step
- Denoising only used to reverse one step of noise
- The noising process is pre-defined, the denoising process is what we train and care about

The Noising Process

- The noising process typically uses a Gaussian Distribution
- Only small amount of Gaussian noise is added each step
- Progressively degrades image into pure noise
- Models can use many steps; hundreds to thousands of small noising steps

The Denoising Process

- Denoising is done using a Neural Network (NN)
- Iterative; therefore trained on single steps of noising process
 - Tries to reverse the noise created,
 - Denoising performance evaluated using a score function
- Important: Reverse process does not magically create an image out of thin air; it takes a noisy input and removes a small amount of noise and is being applied many times over

- Great for image generation
 - Allows us to start with new unseen random noise and then create an image
- Of course can also be used for many other types of data generation

Image source: <u>https://doi.org/10.48550/arXiv.2209.00796</u>

Introduction to the Paper General idea

- "Structured Denoising Diffusion Models in Discrete State-Spaces"
- Basic Discrete Diffusion Models have already been developed
 - Traditional models only allow continuous data due to Gaussian Noise which can take on any real value, like pixel intensities in images

Introduction to the Paper General idea

- Instead of Gaussian noise, discrete-appropriate noise is added
 - Could be flipping bits (classification), changing tokens (text) or changing between categorical states (categorization)
- Paper expands on discrete diffusion models by modelling structured discrete data in the noising process

- Reminder: standard approach makes use of <u>uniform</u> or <u>random</u> noise
- Paper introduces Markov transition matrices that mimic the structure of the real data
 - These matrices govern how the data is corrupted/ noised
- Advantage: reverse process is more effectively trained as it is reversing a more plausible corruption process

Examples of structured noise

- Text: random noise would change a word for a random word. Structured noise would change it with a synonym of the original word (or a similar semantic relationship)
- Images: Pixels have spatial relationships; a pixel surrounded by sky is highly likely to also depict the sky or pixels at edges of objects change in a way that "respects" the boundary rather than completely altering it
- Categorical data: In surveys, responses like "strongly agree", "agree", "neutral", "disagree", "strongly disagree" should not change too much (from strongly agree to strongly disagree). Instead use transition to adjacent categories

Proposed Markov Transition Matrices

• Uniform:

• Every state has an equal probability of transitioning to any other state.

• Absorbing State:

• Elements change with probability into an absorbing state ([MASK] or gray pixel)

• Discretized Gaussian:

• Transition probabilities favor nearby states, modeled after a Gaussian distribution

• Token Embedding Distance:

 Transition probabilities between tokens are based on the distance in their embedding space, favoring transitions between semantically or syntactically similar tokens

Noise schedule

- The paper explored multiple approaches
 - Gaussian: linear increase in variance before discretization (leads to non-linear amount of cumulative noise)
 - Uniform: probability of transition is based on cosine function
 - For general transition matrices such approaches may not be applicable
 - Such cases were explored with a linear interpolation of the mutual information of x_t and x₀ to 0

Loss function and Parameterizations

- The neural network is optimized using a hybridized loss function combining:
 - Lower variational bound (maximizes evidence lower bound for effective approximation of complex posterior distributions.)
 - **Expectation terms** (integrate model performance over initial data distributions and their evolution under noise)
 - Negative Log-Likelihood

$$L_{\lambda} = L_{\rm vb} + \lambda \mathbb{E}_{q(\boldsymbol{x}_0)} \mathbb{E}_{q(\boldsymbol{x}_t|\boldsymbol{x}_0)} [-\log \widetilde{p}_{\theta}(\boldsymbol{x}_0|\boldsymbol{x}_t)]$$

Source: <u>https://doi.org/10.48550/arXiv.2107.03006</u>

Loss function and Parameterizations

- Typically diffusion models will simply predict the next state x_{t-1} from the current state x_t
- Paper approach: instead of directly predicting x_{t-1} from x_t also utilize predictions about x_0 (the initial state)
 - Leads to more "goal-focussed" training

$$p_{ heta}(oldsymbol{x}_{t-1}|oldsymbol{x}_t) \propto \sum_{\widetilde{oldsymbol{x}}_0} q(oldsymbol{x}_{t-1},oldsymbol{x}_t|\widetilde{oldsymbol{x}}_0) \widetilde{p}_{ heta}(\widetilde{oldsymbol{x}}_0|oldsymbol{x}_t).$$

Source: https://doi.org/10.48550/arXiv.2107.03006

Loss function and Parameterizations

Original image source: <u>https://research.nvidia.com/publication/</u> 2022-03_tackling-generative-learning-trilemma-denoising-diffusion-gans-0¹⁰

Loss function and Parameterizations

Original image source: <u>https://research.nvidia.com/publication/</u> 2022-03_tackling-generative-learning-trilemma-denoising-diffusion-gans-0¹

Results Text Generation Results

Model	Model steps	NLL (bits/char) (\downarrow)	Sample time (s) (\downarrow)
Discrete Flow [49] (8 × 3 layers) Argmax Coupling Flow [20] IAF / SCF [57] [‡] Multinomial Diffusion (D3PM uniform) [20]	- - 1000	$\begin{array}{l} 1.23 \\ 1.80 \\ 1.88 \\ \leq 1.72 \end{array}$	$egin{array}{c} 0.16 \ 0.40 \pm 0.03 \ 0.04 \pm 0.0004 \ 26.6 \pm 2.2 \end{array}$
D3PM uniform [20] (ours) D3PM NN (L_{vb}) (ours) D3PM mask ($L_{\lambda=0.01}$) (ours)	$1000 \\ 1000 \\ 1000$	$\leq 1.61 \pm 0.02 \\ \leq 1.59 \pm 0.03 \\ \leq 1.45 \pm 0.02$	$3.6 \pm 0.4 \\ 3.1474 \pm 0.0002 \\ 3.4 \pm 0.3$
D3PM uniform [20] (ours) D3PM NN (L_{vb}) (ours) D3PM absorbing ($L_{\lambda=0.01}$) (ours) Transformer decoder (ours) Transformer decoder [1] Transformer XL [10] [†]	256 256 256 256 256 256	$\leq 1.68 \pm 0.01$ $\leq 1.64 \pm 0.02$ $\leq 1.47 \pm 0.03$ 1.23 1.18 1.08	$\begin{array}{c} 0.5801 \pm 0.0001 \\ 0.813 \pm 0.002 \\ 0.598 \pm 0.002 \\ 0.3570 \pm 0.0002 \\ - \\ - \end{array}$
D3PM uniform [20] (ours) D3PM NN (L_{vb}) (ours) D3PM absorbing ($L_{\lambda=0.01}$) (ours)	20 20 20	$ \leq 1.79 \pm 0.03 \\ \leq 1.75 \pm 0.02 \\ \leq 1.56 \pm 0.04 $	$\begin{array}{c} 0.0771 \pm 0.0005 \\ 0.1110 \pm 0.0001 \\ 0.0785 \pm 0.0003 \end{array}$

Source: <u>https://doi.org/10.48550/arXiv.2107.03006</u>

Results Text Generation Results

Model	Model steps	NLL (bits/char) (\downarrow)	Sample time (s) (\downarrow)
Discrete Flow [49] (8 × 3 layers) Argmax Coupling Flow [20] IAF / SCF [57] [‡] Multinomial Diffusion (D3PM uniform) [20]	- - 1000	1.23 1.80 1.88 ≤ 1.72	$egin{array}{c} 0.16 \ 0.40 \pm 0.03 \ 0.04 \pm 0.0004 \ 26.6 \pm 2.2 \end{array}$
D3PM uniform [20] (ours) D3PM NN (L_{vb}) (ours) D3PM mask ($L_{\lambda=0.01}$) (ours)	$1000 \\ 1000 \\ 1000$	$\leq 1.61 \pm 0.02$ $\leq 1.59 \pm 0.03$ $\leq 1.45 \pm 0.02$	3.6 ± 0.4 3.1474 ± 0.0002 3.4 ± 0.3
D3PM uniform [20] (ours) D3PM NN (L_{vb}) (ours) D3PM absorbing ($L_{\lambda=0.01}$) (ours) Transformer decoder (ours) Transformer decoder [1] Transformer XL [10] [†]	256 256 256 256 256 256	$\leq 1.68 \pm 0.01 \\ \leq 1.64 \pm 0.02 \\ \leq 1.47 \pm 0.03 \\ 1.23 \\ 1.18 \\ 1.08$	$\begin{array}{c} \textbf{0.5801} \pm \textbf{0.0001} \\ \textbf{0.813} \pm \textbf{0.002} \\ \textbf{0.598} \pm \textbf{0.002} \\ \textbf{0.3570} \pm \textbf{0.0002} \\ \textbf{-} \\ \textbf{-} \end{array}$
D3PM uniform [20] (ours) D3PM NN (L_{vb}) (ours) D3PM absorbing ($L_{\lambda=0.01}$) (ours)	20 20 20	$\leq 1.79 \pm 0.03 \\ \leq 1.75 \pm 0.02 \\ \leq 1.56 \pm 0.04$	$\begin{array}{c} 0.0771 \pm 0.0005 \\ 0.1110 \pm 0.0001 \\ 0.0785 \pm 0.0003 \end{array}$

Source: <u>https://doi.org/10.48550/arXiv.2107.03006</u>

Text Generation Results

- On the text8 dataset the absorbing state D3PM performed best in its class
- It was compared to transformer models and the idea introduced in earlier literature
- All transformers outperform the D3PM with absorbing state

Image Generation Results

Model	IS (†)	FID (↓)	NLL (\downarrow)
Sparse Transformer [9] NCSN [45] NCSNv2 [46] StyleGAN2 + ADA [22]	$8.87 \pm 0.12 \\ 8.40 \pm 0.07 \\ 9.74 \pm 0.05$	25.32 10.87 3.26	2.80
Diffusion (original), L_{vb} [43] DDPM L_{vb} [19] DDPM L_{simple} [19] Improved DDPM L_{vb} [30] Improved DDPM L_{simple} [30] DDPM++ cont [47] NCSN++ cont. [47]	7.67 ± 0.13 9.46 ± 0.11 9.89	$13.51 \\ 3.17 \\ 11.47 \\ 2.90 \\ 2.92 \\ 2.20$	$\leq 5.40 \\ \leq 3.70 \\ \leq 3.75 \\ \leq 2.94 \\ \leq 3.37 \\ 2.99$
D3PM uniform L_{vb} D3PM absorbing L_{vb} D3PM absorbing $L_{\lambda=0.001}$ D3PM Gauss L_{vb} D3PM Gauss $L_{\lambda=0.001}$ D3PM Gauss + logistic $L_{\lambda=0.001}$	5.99 ± 0.14 6.26 ± 0.10 6.78 ± 0.08 7.75 ± 0.13 8.54 ± 0.12 8.56 ± 0.10	51.27 ± 2.15 41.28 ± 0.65 30.97 ± 0.64 15.30 ± 0.55 8.34 ± 0.10 7.34 ± 0.19	$ \leq 5.08 \pm 0.02 \\ \leq 4.83 \pm 0.02 \\ \leq 4.40 \pm 0.02 \\ \leq 3.966 \pm 0.005 \\ \leq 3.975 \pm 0.006 \\ \leq 3.435 \pm 0.007 $

Source: https://doi.org/10.48550/arXiv.2107.03006

Image Generation Results

Model	IS (†)	FID (↓)	NLL (\downarrow)
Sparse Transformer [9] NCSN [45]	8.87 ± 0.12	25.32	2.80
NCSNv2 [46] StyleGAN2 + ADA [22]	8.40 ± 0.07 9.74 ± 0.05	10.87 3.26	
Diffusion (original), L_{vb} [43] DDPM L_{vb} [19] DDPM L_{simple} [19] Improved DDPM L_{vb} [30] Improved DDPM L_{simple} [30] DDPM++ cont [47] NCSN++ cont. [47]	7.67 ± 0.13 9.46 ± 0.11 9.89	$13.51 \\ 3.17 \\ 11.47 \\ 2.90 \\ 2.92 \\ 2.20$	$\leq 5.40 \\ \leq 3.70 \\ \leq 3.75 \\ \leq 2.94 \\ \leq 3.37 \\ 2.99$
D3PM uniform L_{vb} D3PM absorbing L_{vb} D3PM absorbing $L_{\lambda=0.001}$ D3PM Gauss L_{vb} D3PM Gauss $L_{\lambda=0.001}$ D3PM Gauss + logistic $L_{\lambda=0.001}$	5.99 ± 0.14 6.26 ± 0.10 6.78 ± 0.08 7.75 ± 0.13 8.54 ± 0.12 8.56 ± 0.10	51.27 ± 2.15 41.28 ± 0.65 30.97 ± 0.64 15.30 ± 0.55 8.34 ± 0.10 7.34 ± 0.19	$ \leq 5.08 \pm 0.02 \\ \leq 4.83 \pm 0.02 \\ \leq 4.40 \pm 0.02 \\ \leq 3.966 \pm 0.005 \\ \leq 3.975 \pm 0.006 \\ \leq 3.435 \pm 0.007 $

Source: <u>https://doi.org/10.48550/arXiv.2107.03006</u>

Image Generation Results

- D3PM outperformed by StyleGAN2 + ADA and NCSN++
- Performs better than original continuous diffusion model (NLL)
- From the D3PM models:
 - Gaussian + logistic parameterization + hybrid loss function performs best
 - All absorbing state and uniform models perform worse than any gaussian model

Example Images

D3PM Absorbing

D3PM

Logistic

Source: https://doi.org/10.48550/arXiv.2107.03006

Conclusion

- D3PMs use matrices with structured transition probabilities
- These are used in the noising process and learned by the denoising process
- Overall strong results, especially since it allows wide range of data
 - For text; autoregressive approaches are still better
 - For images; continuous diffusion models are better for image quality
- More work on: noise schedule, loss function or more timesteps might improve results dramatically

- <u>https://doi.org/10.48550/arXiv.2107.03006</u>
 - (Structured Denoising Diffusion Models in Discrete State-Spaces by Austin et al.)
- <u>https://research.nvidia.com/publication/2022-03_tackling-generative-learning-trilemma-denoising-diffusion-gans-0</u>
 - (Tackling the Generative Learning Trilemma with Denoising Diffusion GANs by Xiao et al.)
- <u>https://doi.org/10.48550/arXiv.2209.00796</u>
 - (Diffusion Models: A Comprehensive Survey of Methods and Applications by Yang et al.)

