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Basics

What is a Diffusion Model

• A diffusion model is often used for image generation from prompts 

• Two processes at work: a noising algorithm (forward process) and a 
denoising algorithm (reverse process)
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Basics

What is a Diffusion Model

• The noising and denoising is done iteratively 

• Both algorithms are run multiple times over 

• Only small amount of noise added each step 

• Denoising only used to reverse one step of noise 

• The noising process is pre-defined, the denoising process is what we 
train and care about
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The Noising Process

What is a Diffusion Model

• The noising process typically uses a Gaussian Distribution 

• Only small amount of Gaussian noise is added each step 

• Progressively degrades image into pure noise 

• Models can use many steps; hundreds to thousands of small noising 
steps
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The Denoising Process

What is a Diffusion Model

• Denoising is done using a Neural Network (NN) 

• Iterative; therefore trained on single steps of noising process 

• Tries to reverse the noise created,  

• Denoising performance evaluated using a score function 

• Important: Reverse process does not magically create an image out 
of thin air; it takes a noisy input and removes a small amount of noise 
and is being applied many times over
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What is a Diffusion Model

• Great for image generation 

• Allows us to start with new unseen random noise and then create 
an image 

• Of course can also be used for many other types of data generation
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General idea

Introduction to the Paper

• „Structured Denoising Diffusion Models in Discrete State-Spaces“ 

• Basic Discrete Diffusion Models have already been developed 

• Traditional models only allow continuous data due to Gaussian 
Noise which can take on any real value, like pixel intensities in 
images
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General idea

Introduction to the Paper

• Instead of Gaussian noise, discrete-appropriate noise is added 

• Could be flipping bits (classification), changing tokens (text) or 
changing between categorical states (categorization) 

• Paper expands on discrete diffusion models by modelling 
structured discrete data in the noising process
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Core Contributions

• Reminder: standard approach makes use of uniform or random noise 

• Paper introduces Markov transition matrices that mimic the structure of 
the real data 

• These matrices govern how the data is corrupted/ noised 

• Advantage: reverse process is more effectively trained as it is reversing 
a more plausible corruption process
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Examples of structured noise

Core Contributions

• Text: random noise would change a word for a random word. 
Structured noise would change it with a synonym of the original 
word (or a similar semantic relationship) 

• Images: Pixels have spatial relationships; a pixel surrounded by sky is 
highly likely to also depict the sky or pixels at edges of objects 
change in a way that „respects“ the boundary rather than completely 
altering it 

• Categorical data: In surveys, responses like „strongly agree“, „agree“, 
„neutral“, „disagree“, „strongly disagree“ should not change too 
much (from strongly agree to strongly disagree). Instead use 
transition to adjacent categories
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Proposed Markov Transition Matrices

Core Contributions

• Uniform: 

• Every state has an equal probability of transitioning to any other state. 

• Absorbing State: 

• Elements change with probability into an absorbing state ([MASK] or gray pixel) 

• Discretized Gaussian: 

• Transition probabilities favor nearby states, modeled after a Gaussian distribution 

• Token Embedding Distance: 

• Transition probabilities between tokens are based on the distance in their 
embedding space, favoring transitions between semantically or syntactically 
similar tokens 12



Noise schedule

Core Contributions

• The paper explored multiple approaches 

• Gaussian: linear increase in variance before discretization (leads to 
non-linear amount of cumulative noise) 

• Uniform: probability of transition is based on cosine function 

• For general transition matrices such approaches may not be 
applicable 

• Such cases were explored with a linear interpolation of the 
mutual information of  and  to 0xt x0
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Loss function and Parameterizations

Technical Implementation 

• The neural network is optimized using a hybridized loss function 
combining: 

• Lower variational bound (maximizes evidence lower bound for 
effective approximation of complex posterior distributions.) 

• Expectation terms (integrate model performance over initial data 
distributions and their evolution under noise) 

• Negative Log-Likelihood
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Loss function and Parameterizations

Technical Implementation 

• Typically diffusion models will simply predict the next state  from 
the current state  

• Paper approach: instead of directly predicting  from  also utilize 
predictions about  (the initial state)  

• Leads to more „goal-focussed“ training

xt−1
xt

xt−1 xt
x0
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Loss function and Parameterizations

Technical Implementation 
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Loss function and Parameterizations

Technical Implementation 
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Text Generation Results

Results
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Text Generation Results

Results
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Text Generation Results

Results

• On the text8 dataset the absorbing state D3PM performed best in its 
class 

• It was compared to transformer models and the idea introduced in 
earlier literature 

• All transformers outperform the D3PM with absorbing state
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Image Generation Results

Results
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Image Generation Results

Results
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Image Generation Results

Results

• D3PM outperformed by StyleGAN2 + ADA and NCSN++ 

• Performs better than original continuous diffusion model (NLL) 

• From the D3PM models: 

• Gaussian + logistic parameterization + hybrid loss function 
performs best 

• All absorbing state and uniform models perform worse than any 
gaussian model
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Example Images

Results
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Conclusion

• D3PMs use matrices with structured transition probabilities 

• These are used in the noising process and learned by the denoising 
process 

• Overall strong results, especially since it allows wide range of data 

• For text; autoregressive approaches are still better 

• For images; continuous diffusion models are better for image 
quality 

• More work on: noise schedule, loss function or more timesteps might 
improve results dramatically
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