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I1I-ICD-CODES

International Classification of Disease

Used in | | 7 countries

Common language for reporting and monitoring
disease

Classification, standardizing and documentation
of diagnosis and symptoms

Usage in research, statistical analysis and billing
health insurance
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MANUAL CODING

- Doctor of medical personal writes codes for reports manually
- Advantage: Professionals understand complex cases and dependencies

- Problems
- Relies heavenly on coder’s knowledge and attention to detail
. Different interpretation -> inconsistent
- Needs much human effort -> not efficient

« Issues in accuracy



RECENT APPROACHES
. Early studies in 2010

- Based on grammar, rules and string matching

- Based on deep learning models
. Convolutional and Recurrent Neuronal Networks
- Multi-label classification problem
. Promising performance
- Assume independence of ICD-Codes
- Explainability is poor



PROBLEMS

.- “Needle-in-a-haystack”-issue

- Locate the key words and sentences relevant to each code
- Explainability

- Important for clinical trust and ethical considerations (e.g., GDPR)
- Complex correlations of ICD-codes

- Biological association among different diseases

- Improve performance by representing correlations
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Hierarchical Label-wise Attention
Network (HLAN) with label-wise
word-level and sentence-level
attention mechanisms

Based on

-Hierarchical Attention bi-directional
Gated Recurrent Units (HA-GRU)

-Hierarchical Attention Networks
(HAN)
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HA-GRU

Recent model

sentence level explanation for

each label

No specific essential words
leading to decision for each
code

For good explanation sentence
and word level necessary
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Multi-Label Classification of Patient Notes a Case Study on ICD Code Assignment - Scientific Figure on ResearchGate. Available from: https:/www.researchgate.net/figure/HA-GRU-model-architecture-overview_fig1_320075101 %5baccessed 9 Sept 2024%5d

HAN

Word-level and sentence-level attention
Used for document classification

Highlights words and sentences leading
to the classification

Improves interpretability but lacks
label-specific explanations

Similar structure to HLAN

pork belly = delicious . || scallops? || I don’t even

like scallops, and these were a-m-a-z-i-n-g . || fun

and tasty cocktails. || next time I in Phoenix, I will
go back here. || Highly recommend.
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HLAN ARCHITECTURE
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Explainable Automated Coding of Clinical Notes using Hierarchical Label-wise Attention Networks and Label Embedding Initialisation by Hang Donga,d, V´ıctor Suarez-Paniagua ´ a,d, William Whiteleyb,d, Honghan Wuc

PRE-TRAINING

- Neural word embedding algorithm with
label sets of training data as input

Pre-training ——> -
- Captures label-co-occurrences and
correlations B
- Resulting label embeddings used to =
o . Embedding of word
initialise weights W, for the neural i the sentence xg,

network ]

Embedding layer
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EMBEDDING LAYER

- Input: clinical note

. Each word x; transformed into one-hot
input representation Ug;

. One-hot input representation Ug;
transformed into low-dimensional
continuous vector eg4; = W,uy4;

Embedding of words
in the sentence x ;

|
Embedding layer
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HIDDEN LAYERS -
WORD LEVEL

One BI-GRU each sentence
BI-GRU generates hidden states h,, for

each word in both directions

Vi, := context matrix for word level
attention mechanism

Each row of V,, V,,,;; is context vector for

label y;,

Attention scores are generated for each
word using V,,,; and hidden state h,,

Label-wise Word-level
attention mechanism

Embedding of words
in the sentence xg;

¥y
a {4 Bi-GRU .

| 1
Embedding layer Hidden layers: hierarchical label-wise attention layers

Figure 1: Hierarchical Label-wise Attention Network (HLAN)
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PREDICTION LAYER

. Attention-weighted representations
combined to label-wise document
representation

- Document representation used to predict

the probability for each label

- Binary cross entropy loss function to
optimise the predictions for multi-label

classification

Label-wise Word-level
attention mechanism

Label-wise Sentence-level
attention mechanism
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EXPERIMENTS-
DATASETS

Dataset Vocab  Train  Valid Test Y]

MIMIC-III-50 59,168 8,066 1,573 1,729 350
MIMIC-III-shielding 47,979 4,574 153 322 20
MIMIC-III 140,795 47,724 1,632 3,372 8,922

- MIMICHII (Full codes, Top-50 codes, COVID-19 shielding codes)

- Full codes
- Clinical data from adult patients between 2001 and 2012
- ICD-9 codes annotated by professionals

- Top-50 codes by their frequencies

- For COVID-19 dataset ICD-9 codes which matched to patients
with high risks during Covid-19

. Most label occurrences are from a few labels

PICTURE’'S SOURCE:EXPLAINABLE AUTOMATED CODING OF CLINICAL NOTES USING
HIERARCHICAL LABEL-WISE ATTENTION NETWORKS AND LABEL EMBEDDING INITIALISATION
BY HANG DONGA,D, V' ICTOR SUAREZ-PANI A~ A,D WILLIAM WHITELEYB,D, HONGHAN
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EXPERIMENTS-

SETTINGS

- CNN for text classification; CNN+att; Bi-GRU;

HAN; HA-GRU

- All models with and without label embedding

initialization (+LE)

. Evaluation Metrics:

- Micro- and Macro- Averaging to AUC,
Precision, Recall, F1-Score

- Precision to the top 5 predicted labels

23
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EXPERIMENTS- METRICS

Recall: ratio of correctly predicted positive
observations to all the actual positive
observations

Precision: ratio of correctly predicted positive
observations to the total predicted positive
observations

F1 := harmonic mean of precision and recall

Area under Curve (AUC): tradeoff between true
positive rate and false positive rate

True Positive Rate (TPR)

o

1 L ----------------------
Perfect

0

Classifier %

False Positive Rate (FPR)
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RESULTS-

PERFORMANCE

- HLAN performed best on MIMIC-III-50 dataset

- Highest Micro-AUC (91.9%); Micro F1
(64.1%); Precision@5 (62.5%)

- MIMIC-III-shielding dataset: HAN and CNN

performed best; HLAN achieved comparable results

- Full dataset: CNN+att with label embedding

initialization best results

25



RESULTS-

PERFORMANCE

- CNN and HAN better for smaller datasets

- Fewer labels and documents favor simpler
architectures

- HA-GRU did not perform better

- Label wise word-level attention mechanism in
HLAN improved performance

- Scalability of HLAN needs to be improved so it can

process large label sizes

- Macro level metrics lower than Micro level metrics

» String imbalance of labels in MIMIC-III

26



RESULTS-
IMPACT OF

LABEL
EMBEDDING

- LE initialization improved performance for most

models

- CNN-+att model significant performance boost in

MIMIC-II-shielding

- CNN, Bi-GRU and HA-GRU less affected
- No significant improvement for HLAN and HAN

- Prior layers already learn label relations

- In general higher stability and low variance

27



RESULTS-

EXPLAINABILITY

- HAN: same highlights in same document for
different labels

- HA-GRU: same word-level but different sentence
level highlights across labels

. HLAN most salient words and sentences

- Attention weights were unstable for CNN

> Different results for different runs

» HLAN provided more meaningful interpretations
by highlighting most salient words and sentences for

each label

28



RESULTS

EXPLAINABILITY

- Validation of results by experienced clinician

- Potential reasons for false positives in different
documents

. Potential reasons:

- Missed coding of medical professionals

- Past disease

- Wrong correlations learned from the data
- Subtle difference among Sub-type disease

. Because of imbalance of vocabularies in
training data

29



RESULTS-

USAGE

- Explanation of HLAN cost further memory

requirement and training time

- HLAN with fewer codes or specific tasks that

require higher explainability

- HAN and HA-GRU for tasks with higher label size

30



FURTHER

RESEARCH

- Enable application to large label size

- Incorporating external knowledge

- To address wrong correlations

. Tests in real-world clinical setting
- Consult professionals to identify issues

- Improve efficiency and accuracy

31



CONCLUSION

- HLAN provides better or comparable results in comparison to state of the
art models

- Label embedding initialisation boosts performance of deep learning
models

- HLAN more suitable for medical coding because of model explainability

- Errors can be explained so that the model can be improved
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