Antigen-Specific Antibody Design with Diffusion-Based Generative Models

SEMINAR ADVANCED MACHINE LEARNING IN BIG DATA ANALYTICS

Marcel Nieveler

Based on: Shitong Luo, et. al., "Antigen-Specific Antibody Design and Optimization with Diffusion-Based Generative Models for Protein Structures"

Intoduction

- Antibodies are a vital part of immune system
- Immune response
- Antobodies detect pathogenes

Contents

- What are antigens and antibodies?
- What are diffusion models?
- How does the diffusion model for antibody design work?
- What are applications of it?

Antigens and

- Large molecules
- For this presentation: only proteins
- On the surface of cells, viruses, fungi, or bacteria

Antibodies

- Protein structures
- Detect and bind to antigens
- Trigger immune response

3D Structure of an Antibody

Image Source: RCSB PDB entry <u>1IGT</u>

Structure of Anibodies

- 2 light chains
- 2 heavy chains
- 6 different complementary determining regions (CDRs)

Diffusion (Models) for Images

Diffusion Models for Images

Model for Antibody Design

- Conditioning on 3D structure of the antigen to fit it
- State space of model
 - o Amino Acid
 - o Position
 - \circ Orientation

Training

Variable	Domain	Diffusion Noise	Objective
Amino acid	{ACDEFGHIKLMNPQRSTVWY}	Multinomial	Kullback-Leibler divergence
(Normalized) Position	\mathbb{R}^3	Gaussian	Mean squared error
Orientation	SO(3)	Iterative pertubation scheme	Discrpancy of real and predicted orientation matrix

Architecture

• 4 multi layer perceptrons

Sampling

- 1. Initialize with arbitrary
 - o Sequence
 - o Positions
 - o Orientations
- 2. Iteratively update values
- 3. Refinement with OpenMM and Rosetta

Sequence-Structure Co-design

- 1. Remove CDR
- 2. Sample new sequence and structure

• Set length to original length

Sequence-Structure Co-design: Results

Method from paper

• Sequences are recovered more accurately

Lower increase in binding energy

 But RAbD optimizes binding energy directly

Antibody Optimization

- 1. Pertub the CDR sequence and structure for *t* steps
- 2. Denoise for *t* steps

Altering Images

+ noise (60%)

- predicted noise

Conditioned on: "University campus with students"

Altering Images

Original

30%

60%

80%

Conditioned on: "University campus with students"

Antibody Optimization: Results

• Sequence similar to original

• Improved binding energy

Summary

- Diffusion models reverse random pertubation
- Design of antibody CDR with competative performance
- Multiple use-cases

