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Information on Paper

Leveraging S4 for Superior Sequence Modeling

e Published 5th Aug 2022 Efficiently Modeling Long Sequences with Structured State Spaces
Albert Gu, Karan Goel, and Christopher Ré

e Albert Gu: Stanford PhD Student Department of Computer Science, Stanford University
* Cited by: 926

* Introducing a new sequence model
eqguence iviode
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Picture 1: https://arxiv.org/pdf/2111.00396
Picture 2: https://www.youtube.com/watch?v=luCBXCErkCs&si=KLTFCIt59BYWsd41



Introduction & Motivation

Sequence Models Struggle with LRDs
(Long Range Dependencies)

 Why it matters: Real-world time-series data often tens of thousands of time
steps

* [Jypes of problems: long and implicitly continuous sequences

» (Goal: designing a single principle model that can address sequence data
across a range of modalities and tasks, particularly on LRDs with minimal
computational resources (efficient training, fast generation, handling

irregularly sampled data) - @) ;é B« AR

> (Continuous

.

ll

Discrete

Time

Series Audio

Text Graphs Genomics Video Robotics

Picture: https://www.youtube.com/live/EvQ3ncuriCM?si=trMHWznpHIDOHOeV
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Example Data

— A ctual Sunday Forecast Monday Forecast Tuesday Forecast

* Type of data: Signal data (roughly more continuous T e
data)

 Time series, Video, Audio,
 sampled at high frequency \ﬁ ‘
\'w"

ption (kWh)

 Medical time series (EEG/ECQG) o

* Energy forecasting signals |

Speech waveform

—
- -

amplitude

* Audio waveforms have 16000+ samples per second

tme

Picture 1: https://paulbourke.net/dataformats/holter/channell.jpg
Picture 2: https://encrypted-tbn2.gstatic.com/images?qg=tbn:ANd9GcTwjDGKJ35zSCe5L0Avtg7cqeyFAEd2NSajXB3tHeQcaXzQbAp7
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Picture 3: https://musicandcomputersbook.com/images/chapteri/elmowave.jpg



Long Range Arena Benchmark (Classification)
Motivation for some New Model

Model ListOps Text Retrieval Image  Pathfinder Path-X Avg
Chance 10.00 50.00 50.00 10.00 50.00 50.00 44.00
Transformer 36.37 64.27 57.46 42.44 71.40 FAIL 54.39
Local Attention 15.82 52.98 53.39 41.46 66.63 FAIL 46.06
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 FAIL 51.24
Longformer 35.63 62.85 56.89 42.22 69.71 FAIL 53.46
Linformer 35.70 53.94 52.27 38.56 76.34 FAIL 51.36
Reformer 37.27 56.10 53.40 38.07 68.50 FAIL 50.67
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 FAIL 51.39
Synthesizer 36.99 61.68 54.67 41.61 69.45 FAIL 52.88
BigBird 36.05 64.02 59.29 40.83 74.87 FAIL 55.01
Linear Trans. 16.13 65.90 53.09 42.34 75.30 FAIL 50.55
Performer 18.01 65.40 53.82 42.777 77.05 FAIL 51.41
Task Avg (Std) | 29(9.7) 61 4.6) 35526) 41(1.8) 72(3.7) FAIL | 52 (2.4)

Picture: https://arxiv.org/pdf/2111.00396



Paradigms for Long Time Series
Other Models

* Transformers, RNNs, CNNs etc. - specialized variants for capturing LRD, they still
struggle to scale to very long sequences (>10000 steps)

 Few hundred steps often already considered as long sequences

 Transformers: self-attention!
* Global context + Positional encoding

* Scalability and parallelization: process the entire sequence simultaneously +
handling of longer sequences

* Quadratic self-attention complexity

* CTMs, RNNs, CNNs: all have their problems but also their strengths -> illustrated on the
next slide



Traditional Models
& their Problems to Capture LRD

Continuous Time Models (CTMs) | Recurrent Neural Networks (RNNs) Convolutlon?cl:lr\\llﬁzl)ral Networks
coninuovs_———————— * Feed forward + backpropagation ry &
e » Recurrence relation: one step to 1 NG
’ T next @G
Discrete . ® A
EVTe . EVTem : T : > Pixels of image fed as input 4 _JI }& :
1 5 34 . 6 e Input Layer | — |Output Layer
 Model underlying continuous  Good for stateful settings like  Parallelizable
process of data reinforcement learning/auto- * Scale much better/ easier to train,
» Capture inductive bias of data aggressive tasks « No vanishing gradient problem
better (irregular sampling, missing
data)
 Complex (in handling irregular time |+ Vanishing gradient (influence of  |nefficient inference
intervals) earlier inputs diminishes * Slow
* Inefficient/slow exponentially) » Bounded context (unable to
* Vanishing gradients » Memory Capacity/inefficient/slow address long dependencies)
* Memory constraints (not parallelizable) » Positional Bias
Picture CTM: https://media.softwaresim.com/Figure_1_-_Updated_State_over_simulated_time_in_continuous_and_discrete_simulation_wm2o09v.webp 8

Picture CNN: https://cdn.analyticsvidhya.com/wp-content/uploads/2024/08/416511-66¢c706889f0e2.webp


https://media.softwaresim.com/Figure_1_-_Updated_State_over_simulated_time_in_continuous_and_discrete_simulation_wm2o9v.webp

CTM, RNN, CNN

How do they Help us?

» All struggle with long sequences

 But combining their strength -> State Space Model -> S4

* Three different views/representations



Introduction SSM

What are State Space Models?

* You might know HMMs (Hidden " D
Markov Models)?

* Continuous number of States “—— B —’@—' [ —T1—C —-@—w

o Sequential Model (text sentences,
time-series,...)

 Data carry some dependency
e Sampled over continuous time (irregular sampling intervals)
* Used in fields such as control theory, computational neuroscience etc.

* Not been applicable to deep learning (theoretical reasons)

Picture: https://en.wikipedia.org/wiki/State-space_representation
10



State Space Model

All three Representations:

“ THHHH

x = Ax + Bu x=/fx+§u
y = Cx + Du y =Cx+ Du

Continuous Recurrent
Representation Representation

Picture: https://arxiv.org/pdf/2111.00396

Convolutional
Representation

11



SSM: Continuous Representation

_ te SRIC
Basis of the SSM SQ?L‘”VQW PRITiX ﬁ}é‘é‘w . |
Chang) | /dlenk  INput MRS

- State
» Mostly theoretically v x'(0= [BIx(+) +B wlt) *Stsle equation

 Four learnable matrices: A, B, C, D
(by gradient descent) Y (1) = € x() *D-wlt) >0utput eqution

* Three variables that depend on time t: x, u, y ~2%P" qupur  feet-  vector
vector malri K svc(;u\f:?
o Continuous: SSM maps function
to function (u(t) -> y(t)) I e e

= y(®)

* Benefits: functions more general - ()
than sequences -> always

|

discretizable | | | | u®

00000

Picture: https://arxiv.org/pdf/2111.00396
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Discretization!

One of the most Important Points in SSM

 Enables us to pass to the 4 . . .
other two views ey — | T,
« Sequence to sequence map N T e
x = Ax + Bu Discrete x = Ax + Bu Continuous
y = Cx + Du SSM y =Cx+ Du SSM

Discretize e Unroll y(t)
x = Ax + Bu —_— x=4x+§u _— y:]?*u
y =Cx+ Du y =Cx+Du
Continuous Recurrent Convolutional [ U S e —
Representation Representation Representation Time ¢ Time ¢

Picture: from blog post « Structured State Spaces: Combining Continuous-Time, Recurrent, and Convolutional Models » by Albert GU et al. (2022)


https://hazyresearch.stanford.edu/blog/2022-01-14-s4-3

SSM: Recurrent View

Real World Data comes in Form of Sequences
e Discretize: rr = Azp1+Bury A= (I-A/2-A)7'(I+A/2-A)

A,B,C,D->A,B,C,D yi = Crxy B=(I-A/2-A)'AB C=C.

« A: Step size (can be varying), resolution of the input
* Allowing the discrete SSM to be computed like an RNN
* Autoregressive computation of state (recurrence)

* Not practical for training on modern hardware due to its sequentiality
(GPUs/TPUs: need parallelization to be efficient)

e Solution = Convolutional View

Picture: https://arxiv.org/pdf/2111.00396
14



SSM: Convolutional View

Unroll Linear Recurrence in Closed Form

Y = C'A Bug+ CA  Buj+---+ CABuj_1 + CBuy

 Most important representation

K eR":=(CB,CAB,...,CA" B)
* Linear recurrences can be computed In |
parallel as a convolution y =K *u

* First equation: can be computed very efficiently with FFTs, provided that K is known

K : SSM convolution kernel (same length as sequence), explicit formula parameterized

in this special view using parameters A, B, C y=ux*xK
- KE ZWWWWMVM‘MW,M~ ()
* Non-trivial T
* Focus of next part lies on the computation “©
Of K i ~ o~ nannnaill K

Picture: https://arxiv.org/pdf/2111.00396 15



Structured State Spaces

Pros + Cons of Different Views

Continuous time

Recurrent

Convolutional

* Automatically handles
continuous data

 Mathematical feasible analysis
(building HIPPO)

* |rregular sampling

Unbounded context
Efficient inference (constant-
time state updates)

Local, interpretable features
Efficient (parallelizable) training

* Slow training + inference

Slow learning (lack of
parallelism)
Vanishing/exploding gradient

Slowness in online or
autoregressive contexts (must
recalculate entire input for each
new data point)

Fixed context size

16




Structured State Spaces

Discretize

Continuous-time Recurrent Convolutional

Picture: https://www.youtube.com/watch?v=EvQ3ncuriCM

17



hop the  B8C . ok

Ctov MTiX . .
stagh\éa?% \ }éﬁo&ﬂ Input MR

U X' (0)= [BIK () + B0 5o equakion

From the SSM to the $4

For long-term Dependencies

3 (t) =C x(H) «D '\LU) 2 Oukput equation

&.

QMPN_ \ 1 INEWY

. . owpuk  feed-  vector
— ) vecto© § A&
SSM: performs poorly in practice maiix  forurrd

 Inherit properties of CTM, RNN, CNN ... including problems with LRDs

* For appropriate choices of the state matrix A, system could handle long-range
dependencies mathematically and empirically

« SSMs have nice properties provided that representations A and K are known

e SSM + HiPPO + Convolutional Kernel = S4

« Basically just SSM with special formulas for A and B

 Reparameterization of the state matrix A using low-rank and normal terms

18



S4: The HiPPO Operator = =._,

What IS It? 2n+1)122k+1)Y2 ifn>k
(HiIPPO Matrix) App=—¢n+1 ifn==%.
0 ifn <k

* How can we remember context from millions of steps ago?
 Compress the past —> reconstruct the path
 HIiPPO (= High-Order-Polynomial Projection Operator)
* Continuous-time memorization: allows the state x(t) to memorize the history of the input u(t)
* Produces a hidden state that memorizes its history
* A s the more important matrix
1. We only need to calculate it once

2. It has a nice, simple structure

Picture: https://arxiv.org/pdf/2111.00396

19



S4: HiPPO —

How does it look like? ~——
e Pass function u (black line) \

through HiPPO -> gives

Iine X (blue Iine) 0 20l00 407 6OIOO 8OIOO 10000

 Red line: approximation

 Reconstruction of input (here: exponential approximation with 64 (coefficients) <<
10000 hidden units)

e \ery accurate for recent past, decays over time
* Always maintaining some information about past

* (Green line: measures quality of approximation over time (exponentially)

Picture: https://www.youtube.com/watch?v=luCBXCErkCs

20



S4: HIPPO

Crucial for Handling LRD

 Maintain a compressed summary of the
entire history of a sequence

« Memory Retention: Prioritizes recent
iInputs to combat vanishing gradients

 Orthogonality: Ensures stable learning
through orthogonal basis functions

o Efficiency: Low-rank structure

Pictures: https://arxiv.org/pdf/2111.00396

NPLR SSM
________________________________________________
—— HiPPO
— Random
— Trained A
-=- Frozen A
0 25 50 75 100 125 150 175 200
Epoch

Trainable SSMs (+ Dropout)

— HiPPO
—— Random NPLR

0.3
—— Random Diagonal
0.2 —— Random Dense
0 25 50 75 100 125 150 175 200
Epoch

21



S4: Structured State Spaces

Issue S
K =(CB,CAB,.... CA" B)

/ /

 Computing convolution (fast) but convolution kernel (expensive)
e Convolutional kernel non-trivial
. Powering up A -> O(N°L) operations and O(NL) space

e Too slow!

« HiPPO: A -> O(N + L) computation and memory usage

* |: sequence length, N: number of states

Picture: https://arxiv.org/pdf/2111.00396

22



S4 Convolution Kernel

Solution!

5S4 kernel: helps to further reduce the runtime (three new techniques)

* |Instead of expanding the standard SSM in coefficient space -> compute its truncated generating
function in frequency space

 Huge improvement
 Computation very complicated

Algorithm 1 S4 CONVOLUTION KERNEL (SKETCH)

Input: 54 parameters A, P,Q,B,C € C" and step size A
Output: SSM convolution kernel K = K1 (A, B,C) for A = A — PQ* (equation QSD)

1. C « (I — ZL) C > Truncate SSM generating function (SSMGF') to length L

2: Z?SEZ; Z(SEZ; — [6’ Q] (Z o A) 1 B P] > Black-box Cauchy kernel
3: K(w) < 142 koo(w) — ko1 (w) (1 + k11 (w)) " tkio(w)] > Woodbury Identity
4 K={K(W):w= exp(27m%)} > Evaluate SSMGF at all roots of unity w € Qf,
5: K + iFFT(K) > Inverse Fourier Transform

Picture: https://arxiv.org/pdf/2111.00396 -



Structured State Spaces (S4)

Wrap up: What is S4? Key Innovation?

 New parameterization + computation using a Cauchy kernel

 Enhances S4's ability to handle sequences with thousands of time steps
without significant computational overhead

» Constructed to not forget things

24



Experiments - S4

Large-scale Generative Modeling +
Fast Autoregressive Generation
 CIFAR-10: autoregressive models
 No 2D inductive bias

o Competitive with the best models
designed for this task

 WikiText-103: language modeling

 Approaches performance of transformers
with much faster generation

Pictures: https://arxiv.org/pdf/2111.00396

Model bpd 2D bias Images / sec
Transformer 3.47 None 0.32 (1x)
Linear Transf. @ 3.40 None 17.85 (56 %)
Pixel CNN 3.14 2D conv. -

Row PixelRNN 3.00 2D BiLSTM -

Pixel CNN-++ 2.92 2D conv. 19.19 (59.97x)
Image Transf. 2.90 2D local attn. 0.54 (1.7x)
PixelSNAIL 2.85 2D conv. + attn. 0.13 (0.4x)
Sparse Transf. 2.80 2D sparse attn.

S4 (base) 2.92 None 20.84 (65.1 %)
S4 (large) 2.85 None 3.36 (10.5%)
Model Params Test ppl. Tokens / sec
Transformer 247TM 20.51 0.8K (1x)
GLU CNN 229M 37.2 -
AWD-QRNN 151M 33.0 -

LSTM + Hebb. - 29.2 -

TrellisNet 180M 29.19 -

Dynamic Conv. 255M 25.0 -

TaLK Conv. 240M 23.3 -

S4 249M 20.95 48K (60 X)

25



Train: Test:

Experiments - S4

Speech Classification 1.1 MFCC Raw  0.5x

Transformer 90.75 X X
Performer 80.85 30.77 30.68
: ODE-RNN 65.9 X X
* |rregular continuous data NRDE 29 8 16.49  15.12
. ExpRNN 82.13 11.6 10.8
* Missing values LipschitzZRNN ~ 88.38 X X
: : CKConv 95.3 71.06 65.96
 Can adapt to any sampling rate (different WaveGAN-D X 06.25 X
frequencies) at test time by simply [ SSL 9358 X x
changing its step size S4 03.96  98.32 96.30

e WaveGAN-D: CNN, second best on Raw,
but cannot deal with different sampling rate

Table: https://www.youtube.com/watch?v=luCBXCErkCs




Experiments - S4

Speech Classification 1.2

e 1.7% error on
length-16000
sequences

Raw data requires
specialized CNNs

Table: https://www.youtube.com/watch?v=luCBXCErkCs

90.25 < 88x larger

L=160 L=16000
MFCC Raw
Transformer 90.75 X
Performer R0.85 30.77
ODE-RNN 65.9 X
NRDE RO.8 16.49
ExpRNN 82.13 11.6
LipschitzRNN  88.38 X
CKConv 05.3 71.66
Wave(GAN-D X
[.SSL 03.58 X
S4 03.96 08.32

than S4

27



Experiments - S4

Sequential Image Classification

SMNIST PMNIST sCIFAR
Transformer 98.9 97.9 62.2 Transformers
LSTM 98.9 95.11 63.01
r-LSTM 98.4 95.2 72.2
UR-LSTM 99.28 96.96 71.00
UR-GRU 99.27 96.51 74.4 RNNs
HiPPO-RNN  98.9 08.3 61.1
LMU-FFT _ 98.49 _
LipschitzZRNN  99.4 96.3 64.2
TCN 99.0 97.2 _
TrellisNet 99.20 98.13 73.42 CNNs
CKConv 99.32 98.54 63.74
L.SSL 99.53 08.76 84.65
S4 99.63 98.70 91.13 SSMs

Table: https://arxiv.org/pdf/2111.00396

Picture: https://www.mabl.com/hubfs/Screen Shot 2018-01-25 at 5.00.49 PM.png

plane  car bird
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2 KPR 52T &
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S o P

s e - 0 o I O

e Perform 15-30% better than all
previously evaluated sequence

models

* 91% accuracy on sequential

CIFAR-10
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Experiments - S4
The Importance of HIPPO

SCIFAR-10 Classification Accuracy

e Black line: Transformer

* [ypically in deep learning:

randomly initializing all
the parameters -> it does ..
terribly

* Plug in formula for matrix:
from much below the baseline to substantially above!!

Picture: https://www.youtube.com/watch?v=luCBXCErkCs

HIPPO A

100

< —

S4

Naive SSM

29



Experiments -

Long Rage Arena
Benchmark

e Six tasks, different
types of data from
1000-16000 length

 88% accuracy on
Path-X (first modell!)

Table: https://arxiv.org/pdf/2111.00396

S4

Benchmark spanning text, images, symbolic reasoning (length 1K-16K)

Model LISTOPS ['EX] RETRIEVAI IMAGI PATHFINDER PATH-X AV
Random 10.00 50.00 H50.00 10.00 H0.00 50.00 36.67
Iransforme: 36.37 04.27 017.46 12.44 (1.40 X 3.00
lLocal Attention 15.82 D2.UR D3.3Y9 41.46 H66.63 X 16.71
\‘[).ll'.‘-i' lrans. 17.07 63.08 59.59 14.24 71.71 X ) 1.09
Longformer: 30.63 H2.8D 06.8Y 12.22 69.71 X 59 RR
Linformer 35.70 n3.94 D2.27 I%.56 16.34 X n1.14
Reformer 37.27 56.10 n3.40 38.07 6X.50 X 50.56
Sinkhorn Trans 13.67 61.20 N3.83 11.23 67.45 X 01.23
Synthesizer 30.9Y9 O1.68 24.67 11.601 6Y.45 X 02.40
BigBird 36.05 64.02 59.29 10.83 74.87 X 04.17
Linear Trans. 16.13 65.90 53.09 12.34 75.30 * 50.46
Performer 18.0] 65.40 03.82 2.01 17.05 A 01.18
FNet 35.33 65.11 59.61 38.67 77.80 X 54.42
Nvystromformer 37.15 65.52 79.56 11.58 70.94 X 017.46
Luna-256 37.20 64.57 (9.29 17.38 (1.l4 X 59.37
sS4 08.35 76.02 87.09 87.26 86.05 88.10 80.48

30



Experiments - S4

Take-Away: Towards a General-purpose Sequence Model

 Large-scale generative modeling (competitive with the best autoregressive
models)

 Fast autoregressive generation (perform 60x faster pixel/token generation)
 Sampling resolution change (adapt to changes)

* Learning with weaker inductive biases (surpasses Speech CNNs on
speech classification, matches a 2-D ResNet on sequential CIFAR with over

90% accuracy)

31



Further Application for S4 Model

Some Examples

* Audio generation

» Large scale audio pre-training

» S4 extensions/variations

¢ 5S4 + Transformers for language models

2D + 3D versions of S4 (images, video)

32



s
Their Conclusion .‘o’.
Outlook —

5S4 highly versatile, since it can be applied to text, vision, audio and time-series tasks
(or even graphs)

* Transformers are still dominating language modelling (54 is more for continuous data)
5S4 combined with other sequence models to complement their strengths

* Challenge: to know when to favor one view over another, depending on stage of
process (training or inference) + the type of data

* Ability to handle very long sequences, generally with a lower number of parameters
than other models (ConvNet or transformers), while still being very fast

* Much potential, promising ideas

33



THANK YOU VERY MUCH! ;)

Do you have any questions?



