Efficiently Modeling Long Sequences with Structured State Spaces **Advanced Machine Learning in Big Data Analytics**

By Maya Natascha Vienken

Table of Contents

- 1. Introduction & Problem
- 2. Long Time Series (RNN, CNN, CTM, Transformers)
- 3. State Space Models (SSMs)
- 4. Structured State Spaces (S4)
- 5. Their Experiments and Results
- 6. Further Applications/Conclusion

EEG/ECG

Audio

Energy Forecasting

2

Information on Paper Leveraging S4 for Superior Sequence Modeling

- Published 5th Aug 2022
- Albert Gu: Stanford PhD Student
- Cited by: 926
- Introducing a new sequence model

Efficiently Modeling Long Sequences with Structured State Spaces

Albert Gu, Karan Goel, and Christopher Ré

Department of Computer Science, Stanford University

Introduction & Motivation Sequence Models Struggle with LRDs (Long Range Dependencies)

- steps
- Types of problems: long and implicitly continuous sequences
- computational resources (efficient training, fast generation, handling irregularly sampled data)

Discrete

Picture: https://www.youtube.com/live/EvQ3ncuriCM?si=trMHWznpHIDOHOeV

Why it matters: Real-world time-series data often tens of thousands of time

 Goal: designing a single principle model that can address sequence data across a range of modalities and tasks, particularly on LRDs with minimal

Introduction & Motivation **Example Data**

- Type of data: Signal data (roughly more continuous) data)
 - Time series, Video, Audio, ...
 - sampled at high frequency

- Medical time series (EEG/ECG)
- Energy forecasting signals
- Speech waveform
 - Audio waveforms have 16000+ samples per second

Picture 1: https://paulbourke.net/dataformats/holter/channel1.jpg

Picture 2: https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcTwjDGKJ35zSCe5L0Avtg7cqeyFdEd2NSajXB3tHeQcaXzQbAp7 Picture 3: https://musicandcomputersbook.com/images/chapter1/elmowave.jpg

Long Range Arena Benchmark (Classification) **Motivation for some New Model**

Model	ListOps	Text	Retrieval	Image	Pathfinder	Path-X	Avg
Chance	10.00	50.00	50.00	10.00	50.00	50.00	44.00
Transformer	36.37	64.27	57.46	42.44	71.40	FAIL	<u>54.39</u>
Local Attention	15.82	52.98	53.39	41.46	66.63	FAIL	46.06
Sparse Trans.	17.07	63.58	59.59	44.24	71.71	FAIL	51.24
Longformer	35.63	62.85	56.89	42.22	69.71	FAIL	53.46
Linformer	35.70	53.94	52.27	38.56	<u>76.34</u>	FAIL	51.36
Reformer	37.27	56.10	53.40	38.07	68.50	FAIL	50.67
Sinkhorn Trans.	33.67	61.20	53.83	41.23	67.45	FAIL	51.39
Synthesizer	36.99	61.68	54.67	41.61	69.45	FAIL	52.88
BigBird	36.05	64.02	<u>59.29</u>	40.83	74.87	FAIL	55.01
Linear Trans.	16.13	65.90	53.09	42.34	75.30	FAIL	50.55
Performer	18.01	<u>65.40</u>	53.82	<u>42.77</u>	77.05	FAIL	51.41
Task Avg (Std)	29 (9.7)	61 (4.6)	55 (2.6)	41 (1.8)	72 (3.7)	FAIL	52 (2.4)

Picture: https://arxiv.org/pdf/2111.00396

Paradigms for Long Time Series Other Models

- Transformers, RNNs, CNNs etc. specialized variants for capturing LRD, they still struggle to scale to very long sequences (>10000 steps)
 - Few hundred steps often already considered as long sequences
- **Transformers:** self-attention!
 - Global context + Positional encoding
 - Scalability and parallelization: process the entire sequence simultaneously + handling of longer sequences
 - Quadratic self-attention complexity
- **CTMs, RNNs, CNNs:** all have their problems but also their strengths -> illustrated on the next slide

7

Traditional Models & their Problems to Capture LRD

Continuous Time Models (CTMs)	Recurrent Neural Networks (RNNs)	Convolutional Neural Networks (CNNs)
Continuous Dt Dt Time Discrete Event Event 1 2 3 4 5 6 Time	 Feed forward + backpropagation Recurrence relation: one step to next 	Pixels of image fed as input
 Model underlying continuous process of data Capture inductive bias of data better (irregular sampling, missing data) 	 Good for stateful settings like reinforcement learning/auto- aggressive tasks 	 Parallelizable Scale much better/ easier to train, No vanishing gradient problem
 Complex (in handling irregular time intervals) Inefficient/slow Vanishing gradients Memory constraints 	 Vanishing gradient (influence of earlier inputs diminishes exponentially) Memory Capacity/inefficient/slow (not parallelizable) 	 Inefficient inference Slow Bounded context (unable to address long dependencies) Positional Bias

Picture CTM: https://media.softwaresim.com/Figure_1_-_Updated_State_over_simulated_time_in_continuous_and_discrete_simulation_wm2o9v.webp Picture CNN: https://cdn.analyticsvidhya.com/wp-content/uploads/2024/08/416511-66c706889f0e2.webp

CTM, RNN, CNN How do they Help us?

- All struggle with long sequences
- But combining their strength -> State Space Model -> S4
- Three different views/representations

Introduction SSM What are State Space Models?

- You might know HMMs (Hidden Markov Models)?
- Continuous number of States
- Sequential Model (text sentences, time-series,...)
 - Data carry some dependency
- Sampled over continuous time (irregular sampling intervals)
- Used in fields such as control theory, computational neuroscience etc.
- Not been applicable to deep learning (theoretical reasons)

State Space Model **All three Representations:**

11

SSM: Continuous Representation Basis of the SSM how the state state

- Mostly theoretically
- Four learnable matrices: A, B, C, D (by gradient descent)
- Three variables that depend on time t: x, u, y
- Continuous: SSM maps function to function (u(t) -> y(t))
 - Benefits: functions more general than sequences -> always discretizable

Discretization! One of the most Important Points in SSM

- other two views

Picture: from blog post « Structured State Spaces: Combining Continuous-Time, Recurrent, and Convolutional Models » by Albert GU et al. (2022)

SSM: Recurrent View Real World Data comes in Form of Sequences

- $x_k = \overline{A}x_{k-1} + \overline{B}u_k$ $\overline{A} = (I \Delta/2 \cdot A)^{-1}(I + \Delta/2 \cdot A)$ • Discretize: $y_k = \overline{C} x_k$ $\overline{B} = (I - \Delta/2 \cdot A)^{-1} \Delta B$ $\overline{C} = C.$ $A, B, C, D \rightarrow \overline{A}, \overline{B}, \overline{C}, \overline{D}$
- Δ : Step size (can be varying), resolution of the input
- Allowing the discrete SSM to be computed like an RNN
 - Autoregressive computation of state (recurrence)
- Not practical for training on modern hardware due to its sequentiality (GPUs/TPUs: need parallelization to be efficient)
- Solution = Convolutional View

SSM: Convolutional View Unroll Linear Recurrence in Closed Form

- Most important representation
- Linear recurrences can be computed in parallel as a convolution
- First equation: can be computed very efficiently with FFTs, provided that $ar{K}$ is known
- \bar{K} : SSM convolution kernel (same length as sequence), explicit formula parameterized in this special view using parameters A, B, C y = u * K
 - Non-trivial
 - Focus of next part lies on the computation of K

$$y_k = \overline{CA}^k \overline{B} u_0 + \overline{CA}^{k-1} \overline{B} u_1 + \dots + \overline{CAB} u_{k-1} + \overline{CB}$$

 $\overline{K} \in \mathbb{R}^L := (\overline{CB}, \overline{CAB}, \dots, \overline{CA}^{L-1} \overline{B})$
 $y = \overline{K} * u$

Structured State Spaces Pros + Cons of Different Views

Continuous time	Recurrent	Convolutional
 Automatically handles continuous data Mathematical feasible analysis (building HiPPO) Irregular sampling 	 Unbounded context Efficient inference (constant- time state updates) 	 Local, interpretable features Efficient (parallelizable) training
Slow training + inference	 Slow learning (lack of parallelism) Vanishing/exploding gradient 	 Slowness in online or autoregressive contexts (must recalculate entire input for each new data point) Fixed context size

Structured State Spaces

From the SSM to the S4 For long-term Dependencies

- SSM: performs poorly in practice
 - Inherit properties of CTM, RNN, CNN ... including problems with LRDs
 - For appropriate choices of the state matrix A, system could handle long-range dependencies mathematically and empirically
 - SSMs have nice properties *provided that* representations \bar{A} and \bar{K} are known
- SSM + <u>HiPPO</u> + <u>Convolutional Kernel</u> = <u>S4</u>
- Basically just SSM with special formulas for A and B
 - Reparameterization of the state matrix A using low-rank and normal terms

S4: The HiPPO Operator What is it?

- How can we remember context from millions of steps ago?
 - Compress the past —> reconstruct the path
- **HiPPO** (= **High-Order-Polynomial Projection Operator**)
- Continuous-time memorization: allows the state x(t) to memorize the history of the input u(t)
- Produces a hidden state that memorizes its history
- A is the more important matrix
 - 1. We only need to calculate it once

2. It has a nice, simple structure

Picture: https://arxiv.org/pdf/2111.00396

S4: HiPPO How does it look like?

 Pass function u (black line) through HiPPO -> gives line x (blue line)

- Red line: approximation
 - 10000 hidden units)
 - Very accurate for recent past, decays over time
 - Always maintaining some information about past
- Green line: measures quality of approximation over time (exponentially)

Reconstruction of input (here: exponential approximation with 64 (coefficients) <

S4: HiPPO **Crucial for Handling LRD**

- Maintain a compressed summary of the entire history of a sequence
- Memory Retention: Prioritizes recent inputs to combat vanishing gradients
- Orthogonality: Ensures stable learning through orthogonal basis functions
- **Efficiency**: Low-rank structure

S4: Structured State Spaces Issue

- Computing convolution (fast) but convolution kernel (expensive)
- Convolutional kernel non-trivial
 - Powering up A -> $O(N^2L)$ operations and O(NL) space
 - Too slow!
 - HiPPO: A -> O(N + L) computation and memory usage
 - L: sequence length, N: number of states

$\overline{K} = (\overline{CB}, \overline{CAB}, \dots, \overline{CA}^{L-1}\overline{B})$

S4 Convolution Kernel Solution!

- S4 kernel: helps to further reduce the runtime (three new techniques)
 - function in frequency space
 - Huge improvement
- Computation very complicated

Algorithm 1 S4 CONVOLUTION KERNEL (SKETCH)

Input: S4 parameters $\Lambda, P, Q, B, C \in \mathbb{C}^N$ and step size Δ **Output:** SSM convolution kernel $\overline{K} = \mathcal{K}_L(\overline{A}, \overline{B}, \overline{C})$ for $A = \Lambda - PQ^*$ (equation (5)) 1: $\widetilde{\boldsymbol{C}} \leftarrow \left(\boldsymbol{I} - \overline{\boldsymbol{A}}^L \right)^* \overline{\boldsymbol{C}}$ 2: $\begin{bmatrix} k_{00}(\omega) & k_{01}(\omega) \\ k_{10}(\omega) & k_{11}(\omega) \end{bmatrix} \leftarrow \left[\tilde{\boldsymbol{C}} \boldsymbol{Q} \right]^* \left(\frac{2}{\Delta} \frac{1-\omega}{1+\omega} - \boldsymbol{\Lambda} \right)^{-1} [\boldsymbol{B} \boldsymbol{P}]$ 3: $\mathbf{\hat{K}}(\omega) \leftarrow \frac{2}{1+\omega} \left[k_{00}(\omega) - k_{01}(\omega)(1+k_{11}(\omega))^{-1}k_{10}(\omega) \right]$ 4: $\hat{\boldsymbol{K}} = \{ \hat{\boldsymbol{K}}(\omega) : \omega = \exp(2\pi i \frac{k}{L}) \}$ 5: $\overline{K} \leftarrow \mathsf{iFFT}(\hat{K})$

Instead of expanding the standard SSM in coefficient space -> compute its truncated generating

Structured State Spaces (S4) Wrap up: What is S4? Key Innovation?

- New parameterization + computation using a Cauchy kernel
- Enhances S4's ability to handle sequences with thousands of time steps without significant computational overhead
- Constructed to not forget things

Experiments - S4

Large-scale Generative Modeling + Fast Autoregressive Generation

- CIFAR-10: autoregressive models
- No 2D inductive bias
- Competitive with the best models designed for this task
- WikiText-103: language modeling
- Approaches performance of transfo with much faster generation

$\mathbf{S4} (base)$	2.92	None	20.84 (65.1 ×)
PixelCNN Row PixelRNN PixelCNN++ Image Transf. PixelSNAIL Sparse Transf.	$3.14 \\ 3.00 \\ 2.92 \\ 2.90 \\ \underline{2.85} \\ 2.80$	2D conv. 2D BiLSTM 2D conv. 2D local attn. 2D conv. + attn. 2D sparse attn.	$-\frac{19.19}{0.54} (50 \times)$ $-\frac{19.19}{0.54} (59.97 \times)$ $0.13 (0.4 \times)$ $-$
Transformer Linear Transf.	3.47 3.40	None None	$0.32 (1 \times)$ 17.85 (56×)
Model	bpd	2D bias	Images / sec

)	r	m	١e	er	S
/			IC		U

Model	Params	Test ppl.	Tokens / see
Transformer	$247 \mathrm{M}$	20.51	$0.8 \mathrm{K} (1 \times)$
GLU CNN	229M	37.2	-
AWD-QRNN	151M	33.0	-
LSTM + Hebb.	-	29.2	-
TrellisNet	180M	29.19	-
Dynamic Conv.	$255\mathrm{M}$	25.0	-
TaLK Conv.	240M	23.3	-
S4	249M	20.95	48K (60×)

Experiments - S4 Speech Classification 1.1

- Irregular continuous data
- Missing values
- Can adapt to any sampling rate (different) frequencies) at test time by simply changing its step size
- WaveGAN-D: CNN, second best on Raw, but cannot deal with different sampling rate

		Train: 16K Hz	Test: 8K Hz
	MFCC	RAW	0.5 imes
Transformer	$90.75 \\ 80.85$	×	×
Performer		30.77	30.68
ODE-RNN	$\begin{array}{c} 65.9 \\ 89.8 \end{array}$	X	x
NRDE		16.49	15.12
ExpRNN	$\begin{array}{c} 82.13\\ 88.38\end{array}$	11.6	10.8
LipschitzRNN		X	X
CKConv	95.3	$\frac{71.66}{96.25}$	<u>65.96</u>
WaveGAN-D	X		X
LSSL $\mathbf{S4}$	$93.58 \\ 93.96$	X 98.32	X 96.30

Experiments - S4 Speech Classification 1.2

• 1.7% error on length-16000 sequences

Raw data requires specialized CNNs

	L=160	L=16000	
	MFCC	RAW	
Transformer	90.75	X	
Performer	80.85	30.77	
ODE-RNN	65.9	X	
NRDE	89.8	16.49	
ExpRNN	82.13	11.6	
LipschitzRNN	88.38	×	
CKConv	95.3	71.66	
WaveGAN-D	×	<u>96.25</u> <	88x larg
LSSL	93.58	x	than S4
$\mathbf{S4}$	93.96	98.32	

Experiments - S4 Sequential Image Classification

	\mathbf{sMNIST}	PMNIST	sCIFAR	
Transformer	98.9	97.9	62.2	Transformers
LSTM	98.9	95.11	63.01	
r-LSTM	98.4	95.2	72.2	
UR-LSTM	99.28	96.96	71.00	
UR-GRU	99.27	96.51	74.4	RNNs
HiPPO-RNN	98.9	98.3	61.1	
LMU-FFT	-	98.49	-	
LipschitzRNN	99.4	96.3	64.2	
TCN	99.0	97.2	_	
TrellisNet	99.20	98.13	73.42	CNNs
CKConv	99.32	98.54	63.74	
LSSL	99.53	98.76	84.65	
S4	99.63	<u>98.70</u>	91.13	SSMs

- Perform 15-30% better than all previously evaluated sequence models
- 91% accuracy on sequential CIFAR-10

Experiments - S4 The Importance of HiPPO

- Black line: Transformer
- Typically in deep learning: randomly initializing all the parameters -> it does terribly

• Plug in formula for matrix: from much below the baseline to substantially above!!

Experiments - S4Long Rage ArenaBenchmark

- Six tasks, different types of data from 1000-16000 length
- 88% accuracy on Path-X (first model!)

Benchmark spa

1.1.1	TO	T	D	T	D	D	
Model	LISTOPS	TEXT	RETRIEVAL	IMAGE	PATHFINDER	PATH-X	AVG
Random	10.00	50.00	50.00	10.00	50.00	50.00	36.67
Transformer	36.37	64.27	57.46	42.44	71.40	X	53.66
Local Attention	15.82	52.98	53.39	41.46	66.63	×	46.71
Sparse Trans.	17.07	63.58	59.59	44.24	71.71	×	51.03
Longformer	35.63	62.85	56.89	42.22	69.71	×	52.88
Linformer	35.70	53.94	52.27	38.56	76.34	X	51.14
Reformer	37.27	56.10	53.40	38.07	68.50	×	50.56
Sinkhorn Trans.	33.67	61.20	53.83	41.23	67.45	X	51.23
Synthesizer	36.99	61.68	54.67	41.61	69.45	×	52.40
BigBird	36.05	64.02	59.29	40.83	74.87	×	54.17
Linear Trans.	16.13	65.90	53.09	42.34	75.30	×	50.46
Performer	18.01	65.40	53.82	42.77	77.05	x	51.18
FNet	35.33	65.11	59.61	38.67	77.80	X	54.42
Nyströmformer	37.15	65.52	79.56	41.58	70.94	×	57.46
Luna-256	37.25	64.57	79.29	47.38	77.72	X	59.37
S4	58.35	76.02	87.09	87.26	86.05	88.10	80.48

nning text, images, symbolic reasoning (length 1K-16K)

(b) A negative example.

Experiments - S4 Take-Away: Towards a General-purpose Sequence Model

- Large-scale generative modeling (competitive with the best autoregressive models)
- Fast autoregressive generation (perform 60× faster pixel/token generation)
- Sampling resolution change (adapt to changes)
- Learning with weaker inductive biases (surpasses Speech CNNs on speech classification, matches a 2-D ResNet on sequential CIFAR with over 90% accuracy)

31

Further Application for S4 Model Some Examples

- Audio generation
- Large scale audio pre-training
- S4 extensions/variations
- S4 + Transformers for language models
- 2D + 3D versions of S4 (images, video)

Their Conclusion Outlook

- (or even graphs)
- S4 combined with other sequence models to complement their strengths
- Challenge: to know when to favor one view over another, depending on stage of process (training or inference) + the type of data
- than other models (ConvNet or transformers), while still being very fast
- Much **potential**, promising ideas

• S4 highly versatile, since it can be applied to text, vision, audio and time-series tasks

• Transformers are still dominating language modelling (S4 is more for continuous data)

Ability to handle very long sequences, generally with a lower number of parameters

33

THANK YOU VERY MUCH! :) Do you have any questions?

34