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TODAY

Announcements

>

>

Lecture will be recorded, edited and posted (as usual)

Starting from “finding similar items” today, topics are relevant
for exam

Reminder: Please assign yourself to a group in the LernraumPlus,
if desired; individual work possible, of course

Groups were supposed to be up to 2-3 people; individual work
possible, of course
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TODAY: OVERVIEW

Contents today

» Useful things II (not relevant for exam)
» Similarity of sets: purpose, basic idea
» Similarity of documents: turning documents into sets == shingles

» Computing the similarity of sets = minhashing
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Useful Things to Know II
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USEFUL THINGS TO KNOW

The TEIDF measure of word importance & done!

Hash functions == done!

>
>
» Secondary storage (disk) and running time of algorithms
» The natural logarithm

>

Power laws
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SECONDARY STORAGE

v

vVvyVvyy

Important to keep in mind when dealing with big data: accessing data
from disks (hard drives) costs time (and energy).

Disks are organized into blocks; e.g. blocks of 64K bytes.
Takes approx. 10 milliseconds to access and read a disk block.
About 10° times slower than accessing data in main memory.

And taking a block to main memory costs more time than executing the
computations on the data when being in main memory.
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SECONDARY STORAGE

One can alleviate problem by putting related data on a single cylinder;
accessing all blocks on a cylinder costs considerably less time per block

Establishes limit of 100MB per second to transfer blocks to main
memory

If data is in the hundreds of gigabytes, let alone terabytes, this is an
issue

Integrate this knowledge into runtime considerations when dealing with big
data!
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THE NATURAL LOGARITHM I

» FEuler constant:

1
e= lim (1+ )" ~2.71828 1)

X—00

» Consider computing (1 + )’ where a is small:

1

(1 = (100 "2 Dy (1 Lyogs 20
» Consider computing (1 — a)” where a is small:
1 x large b

(1—a) = (1 —a)V/D0@) —a=1/x (14 =y ) 2 e

X
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EULER CONSTANT: TAYLOR EXPANSION OF ¢&*
» The Taylor expansion of ¢* is

2 x3 x4

» Convergence slow on large x, so not helpful.
» Convergence fast on small (positive and negative) x.
» Example: x =1/2

1 1 1 1
el? =1 b+ ..~ 164844
trts s ae T

» Example: x = —1

1 1 1 1 1 1
-1 _1_ e T S
=1-1+ 27 % + 24 120 + 750~ 5040°" 0.36786
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POWER LAWS

» Consider two variables y and x and their functional
relationship.

» General form of a power law is
logy =b+alogx (3)

so a linear relationship between the logarithms of x and y.
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POWER LAW: EXAMPLE
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POWER LAWS

» Power law:
logy =b+alogx 4)

» Transforming yields:

b & log x

y=¢e- — el . plo8Y = b 47 (5)

so power law expresses polynomial relationship y = cx*

» Example slide before (logarithm base 10):

y =100 x72 (6)
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REAL WORLD SCENARIOS

» Node degrees in web graph

» Nodes are web pages

» Nodes are linked when there are links between pages

» Order pages by numbers of links: number of pages as a
function of the order number is power law

» Sales of products: y is the number of sales of the x-th most popular
item (books at amazon.com, say)

» Sizes of web sites: y is number of pages at the x-th largest web site

UNIVERSITAT
BIELEFELD



POWER LAW: EXAMPLE II

Number
of web
pages /
Number
of sales

Power Law

LN

Number of links /
Sales rank

Power law for links in web pages / sales of books
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REAL WORLD SCENARIOS

» Zipf's Law: Order words in document by frequency, and let y be
the number of times the x-th word appears in the document.
» Zipf found the relationship to approximately reflect y = cx /2.
» Other relationships follow that law, too. For example, y is
population of x-th most populous (American) state.

» Summary: The Matthew Effect = “The rich get ever richer”
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Finding Similar Items: Introduction
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FINDING SIMILAR ITEMS

Fundamental problem in data mining: retrieve pairs of similar
elements of a dataset.

Applications

» Detecting plagiarism in a set of documents
» Identifying near-identical mirror pages during web searches
» Identifying documents from the same author

» Collaborative Filtering

» Online Purchases (Amazon: suggestions based on “similar’
customers)
» Movie Ratings (Netflix: suggestions based on ‘similar” users)
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ISSUES

Consider a dataset of N items, for example: N webpages or N text
documents.
» Comparing all items requires O(N?) runtime.
» Ok for small N.
> If N ~ 10°, we have 10'? comparisons. Maybe not OK!
» How to efficiently compute similarity if items themselves are
large?

» Similarity works well for sets of items. How to turn data into
sets of items?
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OVERVIEW

Docu-
ment

’\.‘ Locality-
Ml Sensitive

—1Shingling

w Hashing

The set Signatures:
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their

similarity

From mmds .org

» Shingling: turning text files into sets

» Minhashing: computing similarity for large sets

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

» Locality Sensitive Hashing: avoids O(N?) comparisons by
determining candidate pairs
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mmds.org

Shingles

Turning Documents into Sets
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JACCARD SIMILARITY

DEFINITION [JACCARD SIMILARITY]
Consider two sets S and T. The Jaccard similarity SIM(S, T) is defined as

SN T

SIM(S, T) = 5y

@)

the ratio of elements in the intersection and in the union of S and T.

SIM(S,T) = 3
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SHINGLES: DEFINITION

vvyyvyy

Document = large string of characters
k-shingle: a substring of a particular length k
Idea: A document is set of k-shingles

Example: document = “acadacc”, k-shingles for k = 2:
{ac,ad, ca,cc,da}

We can now compute Jaccard similarity for two documents by
considering them as sets of shingles.

Example: documents Dy = ”abcd”, D, = ”dbcd” using 2-shingles yields
Dy = {ab,bc,cd}, D, = {bc,cd, db}, so

SIM(D1, D2) = rngesibiy {u\bfg;;;j};b}l =2/4=1/2
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SHINGLES: DEFINITION

Issue: Determining right size of k.

» [ large enough such that any particular k-shingle appears in document
with low probability (k = 5, yielding 256° different shingles on 256
different characters, ok for emails)

» too large k yields too large universe of elements (example: k = 9 means
256° = (28)° = 272 on the order of number of atoms in the universe)

Solution if necessary k is too large: hash shingles to buckets, such that
buckets are evenly covered, and collisions are rare

We would like to compute Jaccard similarity for pairs of sets

But: even when hashed, size of the universe of elements (= # buckets
when hashed) may be prohibitive to do that fast

What to do?
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Minhashing

Rapidly Computing Similarity of Sets
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SETS AS BITVECTORS

» Bitvectors:

» A bitvector is an array containing zeroes and ones
» E.g.[1,0,0,1,1] is a bitvector of length 5
» Formally: bitvectors of length N are elements of {0, 1}"

» Sets as bitvectors:

» Length of bitvectors is size of universal set
» Entries zero if element not in set, one if element in set
» Example: universal set = {a,b,c,d,e}; set A = {b,c, e}

A=10,1,1,0,1]
a b c d e
» When hashing shingles to buckets, length of bitvector = number
of buckets

» Does not reflect to really store the sets, but nice visualization
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SETS AS BITVECTORS: THE CHARACTERISTIC MATRIX

DEFINITION [CHARACTERISTIC MATRIX]

Given C sets over a universe R, the characteristic matrix
M € {0, 1}IRIXI€l is defined to have entries

0 ifregc
M(r,c) = 8
(r.c) {1 ifrec ®)
forre R,c € C.
Element | Sy | S2 | S3 | Sa
a 1 0 0 1
b 0 0 1 0
c 0 1 0 1
d 1 0 1 1
e 0 0 1 0

Characteristic matrix of four sets (S1, Sz, S3, S4) over universal set {a, b, ¢, d, e}
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mmds.org

PERMUTATIONS

DEFINITION [BIJECTION,PERMUTATION]

» A bijection isamap 7 : S — S such that

» 7n(x) = n(y) implies x = y (7 is injective)
» Forally € Sthereisx € S such that 7(x) = y (7 is surjective)

» A permutation is a bijection

m:{l,...m} = {1,....,m} 9)

Example: A permutation on {1,2,3,4,5} may map

1—-542—-33—>1,4—5and5—2
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PERMUTING ROWS OF CHARACTERISTIC MATRIX

FElement | Sl | 52 | Sg | 54 Element | Sl | 52 | Sg | 54
a 1 0 0 1 b 0 0 1 0
b 0 0 1 0 e 0 0 1 0
c 0 1 0 1 a 1 0 0 1
d 1 0 1 1 d 1 0 1 1
e 0 0 1 0 c 0 1 0 1

A characteristic matrix of four sets (51, Sz, S3, S4) over universal set
{a,b,c,d, e} and a permutation of itsrows 1 — 3,2 -+ 1,3 -+ 5,4 - 4,5 - 2
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MINHASH - DEFINITION

Consider
» a characteristic matrix with m rows
» a particular column S
» apermutation 7 on the rows, thatis = : {1,...,m} — {1,...,m}is

a bijection

DEFINITION [MINHASH]
The minhash function h, on S is defined by

he(S)= min {x(i)|S[i] =1}

ie{l,....m}
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MINHASH - DEFINITION

DEFINITION [MINHASH]
The minhash function h, on S is defined by

he(S) = _min {m(@) [ S[] =1}

ie{l,..

EXPLANATION
The minhash of a column S relative to permutation = is

» after reordering rows according to the permutation 7

» the first row in which a one in S appears
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MINHASH - EXAMPLE

EXAMPLE
Let

» 1 correspondstoa,2tob, ...

» 7:1—-532—-1,3—>54—45—2and
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FElement | 51 | 52 | S’g | 54
b 0 0 1 0
e 0 0 1 0
a 1 0 0 1
d 1 0 1 1
c 0 1 0 1



MINHASHING AND JACCARD SIMILARITY

Given
» two columns (sets) S1, S; of a characteristic matrix

» arandomly picked permutation 7 on the rows (on {1, ...,m})

THEOREM [MINHASH AND JACCARD SIMILARITY]:
The probability that /1 (S1) = h-(S2) is SIM(S51, S,).
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MINHASH AND JACCARD SIMILARITY - PROOF

THEOREM [MINHASH AND JACCARD SIMILARITY]:
The probability that /1 (S1) = hx(S2) is SIM(S1, S).

PROOF.
Distinguish three different classes of rows:

» Type X rows have a 1 in both 51, 5,
» Type Y rows have a 1 in only one of 51, S,

» Type Z rows have a 0 in both Sy, S»

Let x be the number of type X rows and y the number of type Y rows.
» Sox = |S1 n 52| andx+y: |S] U 52|

» Hence
. [S1 N Sy X (10)
- |51 U 52| - xX+y

SIM(S1, S2)
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MINHASH AND JACCARD SIMILARITY - PROOF

PROOF. (CONT.)
» Consider the probability that h(S1) = h(S»)
» Imagine rows to be permuted randomly; proceed from the top
» The probability to encounter type X before type Y is

X
X+vy

(11)

» If first non type Z row is type X, then h(S1) = h(S2)
» If first non type Z row is type Y, then h(S1) # h(Sz)

» So h(S1) = h(S2) happens with probability (11), which by (10)
concludes the proof.
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MATERIALS / OUTLOOK

» See Mining of Massive Datasets, chapter 3.1-3.3

» Asusual, see http://www.mmds.org/ in general for further
resources

» Next lecture: “Finding Similar Items II”
» See Mining of Massive Datasets 3.4-3.6
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http://www.mmds.org/

EXAMPLE / ILLUSTRATION
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