
Mining Data Streams III
Social Networks I

Alexander Schönhuth

Bielefeld University
June 22, 2023

LEARNING GOALS TODAY / OVERVIEW

I Mining Data Streams III
I Estimating Moments: Alon-Matias-Szegedy algorithm

I Social Networks
I Intro: Social Networks are Graphs
I How to Cluster Social Networks into Groups
I Non-overlapping communities: the Girvan-Newman Algorithm

DATA STREAM MANAGEMENT SYSTEM

A data stream management system

Adopted from mmds.org

mmds.org

Estimating Moments

The Alon-Matias-Szegedy Algorithm

MOMENTS: DEFINITION AND PROBLEM

Let U be the set of universal elements, that is each element of the stream is
from U . Assume that
I U is ordered, and
I its elements ui are indexed by 1 ≤ i ≤ I, where
I I = |U| is the cardinality of the universal set

K-TH MOMENT

Consider a stream x1, ..., xn where xj ∈ U , j = 1, ..., n
I Let mi := |{j ∈ {1, ..., n} | xj = ui}| be the count of ui in the stream
I The k-th order moment of the stream is defined to be

I∑
i=1

(mi)
k (1)

MOMENTS: EXAMPLES

k-th order moment:
I∑

i=1

(mi)
k

Examples

I The 0-th moment of a stream is the number of distinct stream elements
I The 1-st moment of a stream is the overall number of stream elements

I The 2-nd moment of a stream is sometimes called the surprise number
I Consider a stream of length 100, on 11 different elements
I The most even distribution, 10 appearances for one particular element,

and 9 for all others, yields surprise number 102 + 10 · 92 = 910
I The most uneven (“surprising”) distribution, 90 appearances for one

particular element, and 1 for all others, yields surprise number
902 + 10 · 12 = 8110

ALON-MATIAS-SZEGEDY ALGORITHM: NOTATION

I Keeping a count for each element in main memory is infeasible

I Therefore, we need to estimate the k-th order moments
+ The Alon-Matias-Szegedy algorithm does this

Notation:

I Let n be the length of the stream

I Let X be variables for which we store attributes
I X.element is an element of the universal set
I X.index is a position 1 ≤ j ≤ n where X.element appears
I X.value is defined as the number of times X.element appears in the

stream between (and including) positions X.index and n

ALON-MATIAS-SZEGEDY ALGORITHM: NOTATION

Example
Let the stream be a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

I Stream length is n = 15

I The true second moment is 52 + 42 + 32 + 32 = 59

I Let us keep three variables, X1,X2 and X3, for which
X1.index = 3,X2.index = 8,X3.index = 13

I X1.element = c,X2.element = d,X3.element = a

I X1.value = 3,X2.value = 2,X3.value = 2

ALONG-MATIAS-SZEGEDY ALGORITHM: 2ND

MOMENT

ALON-MATIAS-SZEGEDY ALGORITHM

I As estimate for the 2nd-order moment, compute, for any X,

n(2X.value − 1) (2)

I + As many estimates as there are stream elements!

I General strategy for using several X: average single estimates

Questions:

I Which one is the best?

I Should we better average several estimates at once?

I What can we guarantee for any such estimate?

ALONG-MATIAS-SZEGEDY ALGORITHM: 2ND

MOMENT

Example (cont.): Stream = a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

I We had X1.value = 3,X2.value = 2,X3.value = 2

I n(2X1.value − 1) = 15(2 · 3 − 1) = 75,n(2X2.value − 1) =
n(2X3.value − 1) = 45

I Yields average (75 + 45 + 45)/3 = 55, close to true value 59

ALON-MATIAS-SZEGEDY ALGORITHM: THEOREM

The expected value E(n(2X.value − 1)) is defined as the average
across all individual estimates n(2X.value − 1).

THEOREM
The 2nd-order moment

I∑
i=1

(mi)
2 (3)

agrees with
E(n(2X.value − 1)).

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF I

I Let e(j) be the stream element appearing at position j

I Let c(j) be number of times e(j) appears between (and including)
positions j to n

I In example stream from above

a, b, c, b, d,
e(6)
a , c, d, a, b, d, c, a, a, b︸ ︷︷ ︸
4 appearances of a: c(6)=4

e.g. e(6) = a and c(6) = 4

I For X.index = j
I e(j) corresponds to X.element
I c(j) corresponds to X.value

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF I

I e(j) corresponds to X.element for X.index = j

I c(j) corresponds to X.value for X.index = j

Inserting this in the definition of E(n(2X.value − 1)), one obtains

E(n(2X.value − 1)) =
1
n

∑
X

n(2X.value − 1) =
1
n

n∑
j=1

n(2c(j)− 1) (4)

by canceling factors further simplifying to

E(n(2X.value − 1)) =
n∑

j=1

(2c(j)− 1) (5)

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF II

Regroup summands by their associated values e(j):

n∑
j=1

(2c(j)− 1) =
∑

a

∑
j: e(j)=a

(2c(j)− 1) (6)

Consider one particular a, let ma be count of a in stream:

I Last j where a appears: 2c(j)− 1 = 2× 1− 1 = 1

I Second last j where a appears: 2c(j)− 1 = 2× 2− 1 = 3

I
...

I First j where a appears: 2×ma − 1

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF III

Consider one particular a, let ma be the number of times a appears in stream:
I Last j where a appears: 2c(j)− 1 = 2× 1− 1 = 1
I Second last j where a appears: 2c(j)− 1 = 2× 2− 1 = 3

I
...

I First j where a appears: 2c(j)− 1 = 2×ma − 1

This yields ∑
j:e(j)=a

(2c(j)− 1) = 1 + 3 + 5 + ...+ (2ma − 1)
(∗)
= (ma)

2 (7)

where (∗) reflects a well-known equality from basic calculus.

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF IV

This yields ∑
i:e(i)=a

(2c(j)− 1) = 1 + 3 + 5 + ...+ (2ma − 1) = (ma)
2

where the last equation follows from an easy induction.

Overall,

E(n(2X.value− 1))
(5)
=

n∑
j=1

(2c(j)− 1)
(6)
=

∑
a

∑
j: e(j)=a

(2c(j)− 1)
(7)
=

∑
a

(ma)
2 (8)

which concludes the proof. �

ESTIMATING HIGHER-ORDER MOMENTS

I Observation: Adding 2v − 1 for v = 1, ...,ma amounts to (ma)
2

I The elementary proof makes use of the equation:
2v − 1 = v2 − (v − 1)2 which can be exploited using the
“telescope property”:

2ma − 1 + 2(ma − 1)− 1 + ...

= m2
a −(ma − 1)2 + (ma − 1)2︸ ︷︷ ︸

=0

−(ma − 2)2 + (ma − 2)2︸ ︷︷ ︸
=0

−...

= m2
a

(9)

I Analogously, by v3 − (v − 1)3 = 3v2 − 3v + 1:

ma∑
v=1

3v2 − 3v + 1 = (ma)
3 (10)

ESTIMATING HIGHER-ORDER MOMENTS

I We had
ma∑

v=1

3v2 − 3v + 1 = (ma)
3 (11)

I So, for a variable X, we can use

n(3((X.value)2 − 3X.value + 1)) (12)

as an estimate for the third order moment

I For arbitrary k, for a variable X, take

n((X.value)k − (X.value − 1)k) (13)

as estimate for k-th order moment

MOMENTS FOR INFINITE STREAMS

I Situation: Stream length n grows with time

I Problem: Need to select variables X, such that X.index is
uniformly distributed

I So, selecting variables X a priori tends to be biased
+ non-uniform

I Solution: Maintain as many variables as possible. As stream
grows:
I Discard existing variables
I Replace by new ones
I such that at all times, variables are uniformly distributed

MOMENTS FOR INFINITE STREAMS

I Solution: As stream grows:
I Replace existing variables by new ones
I such that at all times, variables are uniformly distributed

I Remark: This establishes a generally applicable strategy for
sampling elements from a stream:
I Recall the problem of selecting representative samples
I Recall the general sampling problem

MOMENTS FOR INFINITE STREAMS: SOLUTION

I Suppose we can store/maintain s variables

I Suppose we have seen n stream elements

I Suppose the s different X.index are uniformly distributed

I That is, the probability to see position 1 ≤ j ≤ n among the
selected X.index is s/n

MOMENTS FOR INFINITE STREAMS: SOLUTION

I The probability to see position 1 ≤ j ≤ n among the selected
X.index is s/n

I Upon arrival of (n + 1)-st element, do
I Pick position n + 1 with probability s/(n + 1)
I If picked, create variable X with X.index = n + 1, and throw out

any earlier X with equal probability 1/s
I If not picked, keep existing variables

I Claim: Afterwards, each position has been selected with
probability s/(n + 1)

MOMENTS FOR INFINITE STREAMS: SOLUTION

I Upon arrival of (n + 1)-st element, do
I Pick position n + 1 with probability s/(n + 1)
I If picked, create variable X with X.index = n + 1, and throw out any

earlier X with equal probability 1/s
I If not picked, keep existing variables

I Claim: Afterwards, each position has been selected with probability
s/(n + 1)

Proof:

I (n + 1)-st position is picked with probability s/(n + 1)
I Let 1 ≤ j ≤ n any other position: proof by induction
I Induction hypothesis: before (n + 1)-st element arrived, j had been

picked with probability s/n
I With probability 1− s/(n + 1), probability for having j stays s/n
I With probability s/(n + 1), probability for having j is (s− 1)/s

MOMENTS FOR INFINITE STREAMS: SOLUTION

Proof:

I (n + 1)-st position is picked with probability s/(n + 1)
I With probability 1− s/(n + 1), probability for having j stays s/n
I With probability s/(n + 1), probability for having j is (s− 1)/n

Overall
(1− s

n + 1
)(

s
n
) + (

s
n + 1

)(
s− 1

s
)(

s
n
) (14)

simplifying to

(1− s
n + 1

)(
s
n
) + (

s− 1
n + 1

)(
s
n
) = ((1− s

n + 1
) + (

s− 1
n + 1

))(
s
n
) (15)

yielding
(

n
n + 1

)(
s
n
) =

s
n + 1

(16)

�

Social Networks as Graphs

SOCIAL NETWORKS: INTRODUCTION

BASIC EXAMPLES

I Facebook, Twitter, Google+

DEFINING PROPERTIES

I Collection of entities participating in network
I Usually people, but other entities conceivable

I There is a relationship between the entities
I Being friends is frequent relationship
I Relationship can be of 0-1 type, or weighted

I Assumption of nonrandomness or locality
I Hard to formalize, intuition is that relationships tend to cluster
I If entity A is related with both B and C, B and C are related with

larger probability

SOCIAL NETWORK GRAPHS: ENTITIES AND

RELATIONSHIPS

Adopted from mmds.org

I Entities: Nodes A to G

I Relationships: Represented by edges between nodes
I Example: A is “friends” with B and C

mmds.org

SOCIAL NETWORK GRAPHS: LOCALITY

Adopted from mmds.org

I Locality:
I There are 9 out of 21 possible edges: 9

21 = 0.429
I Given nodes X,Y,Z such that there are edges (X,Y), (Y,Z),

random occurrence of (X,Z) is 7
19 = 0.368

I However, across all pairs of existing edges (X,Y), (Y,Z),
probability that (X,Z) exists is 9

16 = 0.563
+ Network exhibits locality

mmds.org

SOCIAL NETWORKS: EXAMPLES

I Telephone Networks:
I Nodes are phone numbers, edges exist if one number called another
I Edge weights: Number of calls (within certain period of time)
I Communities: Groups of friends, members of a club, people

working at same company

I Email Networks:
I Nodes are email addresses, edges indicate exchange of emails
I Edge directionality may matter, so graph with directed edges
I Communities: Similar to telephone networks

SOCIAL NETWORKS: EXAMPLES

I Collaboration Networks:
I Nodes e.g. represent authors, edges indicate working on same

document
I Alternatively: nodes represent documents, edges indicate that

identical author contributed
I Communities: Groups interested in / working on same subjects;

documents sharing related content

I Other:
I Information networks: Documents, web graphs, patents
I Infrastructure networks: Roads, planes, water pipes, power grids
I Biological networks: Genes, proteins, drugs
I Product co-purchasing networks: E.g. Groupon

SEVERAL TYPES OF NODES

Adopted from mmds.org

EXAMPLES

I Figure: Users (U) put tags (T) on web pages (W): tri-partite network
I Put documents and authors into one bi-partite network

mmds.org

Clustering Social Networks

CLUSTERING SOCIAL NETWORKS: INTRODUCTION

I An important aspect of social networks are communities

I Communities reveal themselves as groups of nodes that share
unusually many edges

I Clustering social networks relates to the discovery of such
communities

COMMUNITIES

Differently Colored Communities in Social Network

Adopted from mmds.org

mmds.org

CLUSTERED NETWORK

Differently Colored Clusters in Social Network

Adopted from mmds.org

mmds.org

DISTANCE MEASURES IN SOCIAL NETWORKS

I Standard clustering techniques work with distance measures

I Distance measures are not obvious to define in social networks
I Let x, y ∈ V be two nodes in a social network G = (V,E). The

measure

d(x, y) =

{
0 (x, y) ∈ E
1 (x, y) 6∈ E

violates the triangle inequality, hence is no distance measure
I Exchanging 0 with 1, and 1 with∞ does not help
I Other binary-valued measures (e.g. 1 and 1.5) agree with triangle

inequality

I But: Additional issues apply

SOCIAL NETWORKS: CLUSTERING ISSUES

Communities: A-B-C and D-E-F-G
Adopted from mmds.org

I Hierarchical Clustering: Randomly picks closest nodes/clusters

I Distance between clusters: distance between closest points

I As soon as clusters are joined on B and D, clusters not as desired

I Summary: Standard clustering techniques difficult/impossible to
sensibly implement

mmds.org

BETWEENNESS

Idea: Identify edges that are least likely to be within community

DEFINITION [BETWEENNESS]
The betweenness of an edge (a, b) is

I the number of pairs of nodes (x, y) such that (a, b) makes part of
the shortest path leading from x to y

I If for (x, y) there are several shortest paths, (a, b) is credited the
fraction of shortest paths leading through (a, b) when computing
its betweenness

BETWEENNESS

Telephone network:
Links between communities have great betweenness

Adopted from mmds.org

Explanation

I High betweenness means that (a, b) is a bottleneck for shortest paths
I If nodes (a, b) lie within community, there are too many options for

shortest paths to circumvent (a, b) (so (a, b) gets credited only small
fractions)

mmds.org

BETWEENNESS: EXAMPLE

Adopted from mmds.org

I (B,D) has the greatest betweenness, 12
I It is on any shortest path between A,B,C and D,E, F,G

I (D,F) has betweenness 4
I It lies on all shortest paths between A,B,C,D and F

mmds.org

GENERAL / FURTHER READING

Literature
I Mining Massive Datasets, 10.1, 10.2

http://infolab.stanford.edu/˜ullman/mmds/
ch10.pdf

I Next lecture: “Social Networks II”; 10.3, 10.5 in Mining of
Massive Datasets

http://infolab.stanford.edu/~ullman/mmds/ch10.pdf
http://infolab.stanford.edu/~ullman/mmds/ch10.pdf

