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LEARNING GOALS TODAY / OVERVIEW

» Mining Data Streams III
» Estimating Moments: Alon-Matias-Szegedy algorithm
» Social Networks

» Intro: Social Networks are Graphs
» How to Cluster Social Networks into Groups
» Non-overlapping communities: the Girvan-Newman Algorithm
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DATA STREAM MANAGEMENT SYSTEM
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Adopted from mmds . org
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Estimating Moments

The Alon-Matias-Szegedy Algorithm



MOMENTS: DEFINITION AND PROBLEM

Let U be the set of universal elements, that is each element of the stream is
from U. Assume that

» U is ordered, and
» its elements u; are indexed by 1 < i < I, where

» [ = |U| is the cardinality of the universal set

K-TH MOMENT
Consider a stream x1, ..., x, wherex; e U,j =1, ...,n

» Letm; :=|{j € {1,...,n} | xj = u;}| be the count of u; in the stream
» The k-th order moment of the stream is defined to be

Z(mok @
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MOMENTS: EXAMPLES

I
k-th order moment: Z(mi)k

i=1

Examples

» The 0-th moment of a stream is the number of distinct stream elements
» The 1-st moment of a stream is the overall number of stream elements

» The 2-nd moment of a stream is sometimes called the surprise number

» Consider a stream of length 100, on 11 different elements

» The most even distribution, 10 appearances for one particular element,
and 9 for all others, yields surprise number 102 + 10 - 92 = 910

» The most uneven (“surprising”) distribution, 90 appearances for one
particular element, and 1 for all others, yields surprise number
902 +10 - 12 = 8110
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ALON-MATIAS-SZEGEDY ALGORITHM: NOTATION

» Keeping a count for each element in main memory is infeasible

» Therefore, we need to estimate the k-th order moments
s The Alon-Matias-Szegedy algorithm does this

Notation:
» Let n be the length of the stream

» Let X be variables for which we store attributes

» X.element is an element of the universal set

» X.index is a position 1 < j < n where X.element appears

» X.value is defined as the number of times X.element appears in the
stream between (and including) positions X.index and n
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ALON-MATIAS-SZEGEDY ALGORITHM: NOTATION

Example
Let the stream be a, b,c,b,d,a,c,d,a,b,d,c,a,a,b

» Stream length is n = 15
» The true second moment is 52 + 42 + 32 + 32 = 59

» Let us keep three variables, X, X, and X3, for which
Xi.index = 3, Xp.index = 8, X3.index = 13

» X;.element = ¢, X.element = d, Xs.element = a

» Xi.value = 3, Xp.value = 2, Xz.value = 2
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ALONG-MATIAS-SZEGEDY ALGORITHM: 2ND
MOMENT

ALON-MATIAS-SZEGEDY ALGORITHM

> As estimate for the 2nd-order moment, compute, for any X,

n(2X.value — 1) 2)

» = As many estimates as there are stream elements!

» General strategy for using several X: average single estimates

Questions:
» Which one is the best?
» Should we better average several estimates at once?

» What can we guarantee for any such estimate?
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ALONG-MATIAS-SZEGEDY ALGORITHM: 2ND
MOMENT

Example (cont.): Stream =a,b,c,b,d,a,c,d,a,b,d,c,a,a,b
» We had Xj.value = 3, X5.value = 2, X3.value = 2

» n(2Xy.value —1) =15(2-3 - 1) =75,n(2Xy.value — 1) =
n(2X3.value — 1) = 45

» Yields average (75 + 45 + 45) /3 = 55, close to true value 59
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ALON-MATIAS-SZEGEDY ALGORITHM: THEOREM

The expected value E(n(2X.value — 1)) is defined as the average
across all individual estimates n(2X.value — 1).

THEOREM
The 2nd-order moment

Z(moz 3)

agrees with
E(n(2X.value — 1)).

UNIVERSITAT
BIELEFELD



ALON-MATIAS-SZEGEDY ALGORITHM: PROOF I

» Lete(j) be the stream element appearing at position j

» Let c(j) be number of times e(j) appears between (and including)
positions j to n

» In example stream from above

e(6)
a,b,c,b,d, a",c,d,a,b,d,c,a,a,b

4 appearances of a: c(6)=4

e.g.e(6) =aand c(6) =4
» For X.index = j

» ¢(j) corresponds to X.element
» ¢(j) corresponds to X.value
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ALON-MATIAS-SZEGEDY ALGORITHM: PROOF I

» e¢(j) corresponds to X.element for X.index = j

» ¢(j) corresponds to X.value for X.index = j

Inserting this in the definition of E(n(2X.value — 1)), one obtains

n

1 1 .
E(n(2X value — 1)) = - XX: n(2X.value —1) = -~ 2 n2c(j) —1) (4)
by canceling factors further simplifying to
E(n(2X.value — 1)) =Y (2c(j) - 1) (5)

j=1
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ALON-MATIAS-SZEGEDY ALGORITHM: PROOF II

Regroup summands by their associated values e(j):

() -1)=>" " (2()-1) (6)
j=1

@ j:e()=a
Consider one particular a, let m, be count of a in stream:
» Lastjwhereaappears: 2c(j) —1=2x1-1=1
» Second last j where a appears: 2¢(j) —1=2x2-1=3

>

» First j where a appears: 2 x m, — 1
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ALON-MATIAS-SZEGEDY ALGORITHM: PROOF III

Consider one particular 4, let m, be the number of times a appears in stream:
» Lastjwhereaappears: 2c(j) —1=2x1-1=1
» Second last j where a appears: 2¢(j) —1=2x2-1=3
>
» First j where a appears: 2c(j) —1=2xm, —1
This yields
3 @)~ 1) =1+3+5+ .+ 2mg— 1) E (m,)? @)
je(j)=a

where (x) reflects a well-known equality from basic calculus.
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ALON-MATIAS-SZEGEDY ALGORITHM: PROOF IV

This yields

> @) = 1) =143+5+ ...+ 2m, — 1) = (m,)’

ize(i)=a
where the last equation follows from an easy induction.

Overall,

E(n(2X.value — 1)) 2 zn:(Zc(j) “DEST ST @) - EY m)? ®)

j=1 a j:e(j)=a a

which concludes the proof. a
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ESTIMATING HIGHER-ORDER MOMENTS

» Observation: Adding 2v — 1 for v = 1, ..., m, amounts to (1m,)?

» The elementary proof makes use of the equation:
20 — 1 = v — (v — 1)? which can be exploited using the
“telescope property”:

2m, —1+2(m, — 1) — 1+ ...

m? —(m, — 1> + (m, — 1)* —(m, — 2)* + (m, — 2)* —...

©)
=0 =0
—
» Analogously, by v* — (v —1)* = 30> — 30+ 1
My
> 30% —3v 41 = (m,)® (10)

v=1
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ESTIMATING HIGHER-ORDER MOMENTS

» We had .
> 30% = 3v 41 = (m,)®

v=1

» So, for a variable X, we can use
n(3((X.value)® — 3X.value + 1))

as an estimate for the third order moment

» For arbitrary k, for a variable X, take
n((X.value)* — (X.value — 1))

as estimate for k-th order moment
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MOMENTS FOR INFINITE STREAMS

» Situation: Stream length n grows with time

» Problem: Need to select variables X, such that X.index is
uniformly distributed

» So, selecting variables X a priori tends to be biased
& non-uniform

» Solution: Maintain as many variables as possible. As stream
grows:

» Discard existing variables
> Replace by new ones
» such that at all times, variables are uniformly distributed
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MOMENTS FOR INFINITE STREAMS

» Solution: As stream grows:

» Replace existing variables by new ones
» such that at all times, variables are uniformly distributed

» Remark: This establishes a generally applicable strategy for
sampling elements from a stream:

» Recall the problem of selecting representative samples
» Recall the general sampling problem
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MOMENTS FOR INFINITE STREAMS: SOLUTION

» Suppose we can store/maintain s variables
» Suppose we have seen n stream elements
» Suppose the s different X.index are uniformly distributed

» That is, the probability to see position 1 < j < n among the
selected X.index is s/n
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MOMENTS FOR INFINITE STREAMS: SOLUTION

» The probability to see position 1 < j < n among the selected
X.index iss/n

» Upon arrival of (n + 1)-st element, do

» Pick position n + 1 with probability s/(n 4 1)

» If picked, create variable X with X.index = n + 1, and throw out
any earlier X with equal probability 1/s

» If not picked, keep existing variables

» Claim: Afterwards, each position has been selected with
probability s/(n + 1)
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MOMENTS FOR INFINITE STREAMS: SOLUTION

» Upon arrival of (1 + 1)-st element, do

» Pick position 1 + 1 with probability s/(n + 1)

» If picked, create variable X with X.index = n + 1, and throw out any
earlier X with equal probability 1/s

» If not picked, keep existing variables

» Claim: Afterwards, each position has been selected with probability
s/(n+1)
Proof:
» (n+ 1)-st position is picked with probability s/(n + 1)
» Let1 < j < nany other position: proof by induction

» Induction hypothesis: before (1 + 1)-st element arrived, j had been
picked with probability s/n

v

With probability 1 — s/(n + 1), probability for having j stays s/n
With probability s/(n + 1), probability for having jis (s — 1)/s

v
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MOMENTS FOR INFINITE STREAMS: SOLUTION

Proof:
» (n+ 1)-st position is picked with probability s/(n + 1)
» With probability 1 —s/(n + 1), probability for having j stays s/n
» With probability s/(n + 1), probability for having jis (s — 1)/n

Overall

s s 5 s—1,,s
(- = DE) +(SDEE)
simplifying to
(- 200+ D) = - S +EE)
yielding
n S S
GG = 7T
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Social Networks as Graphs
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SOCIAL NETWORKS: INTRODUCTION

BASIC EXAMPLES

» Facebook, Twitter, Google+

DEFINING PROPERTIES

» Collection of entities participating in network

» Usually people, but other entities conceivable

» There is a relationship between the entities

» Being friends is frequent relationship
» Relationship can be of 0-1 type, or weighted

» Assumption of nonrandomness or locality

» Hard to formalize, intuition is that relationships tend to cluster
» If entity A is related with both B and C, B and C are related with
larger probability
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SOCIAL NETWORK GRAPHS: ENTITIES AND
RELATIONSHIPS

Adopted from mmds . org

» Entities: Nodes A to G

» Relationships: Represented by edges between nodes
» Example: A is “friends” with B and C
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mmds.org

SOCIAL NETWORK GRAPHS: LOCALITY

A (B) (D) ()

Adopted from mmds . org

» Locality:

> There are 9 out of 21 possible edges: = = 0.429

» Given nodes X, Y, Z such that there are edges (X, Y), (Y, Z),
random occurrence of (X, Z) is 5 = 0.368

» However, across all pairs of existing edges (X, Y), (Y, Z),
probability that (X, Z) exists is & = 0.563

1 Network exhibits locality
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SOCIAL NETWORKS: EXAMPLES

» Telephone Networks:

» Nodes are phone numbers, edges exist if one number called another

» Edge weights: Number of calls (within certain period of time)

» Communities: Groups of friends, members of a club, people
working at same company

» Email Networks:

» Nodes are email addresses, edges indicate exchange of emails
» Edge directionality may matter, so graph with directed edges
» Communities: Similar to telephone networks
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SOCIAL NETWORKS: EXAMPLES

» Collaboration Networks:

» Nodes e.g. represent authors, edges indicate working on same
document

» Alternatively: nodes represent documents, edges indicate that
identical author contributed

» Communities: Groups interested in / working on same subjects;
documents sharing related content

» Other:

» [Information networks: Documents, web graphs, patents

» Infrastructure networks: Roads, planes, water pipes, power grids
» Biological networks: Genes, proteins, drugs

» Product co-purchasing networks: E.g. Groupon
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SEVERAL TYPES OF NODES

Adopted from mmds . org
EXAMPLES
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» Figure: Users (U) put tags (T) on web pages (W): tri-partite network
» Put documents and authors into one bi-partite network
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Clustering Social Networks
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CLUSTERING SOCIAL NETWORKS: INTRODUCTION

» An important aspect of social networks are communities

» Communities reveal themselves as groups of nodes that share
unusually many edges

» Clustering social networks relates to the discovery of such
communities
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COMMUNITIES
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Differently Colored Communities in Social Network

Adopted from mmds . org
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CLUSTERED NETWORK

Differently Colored Clusters in Social Network

Adopted from mmds . org
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DISTANCE MEASURES IN SOCIAL NETWORKS

» Standard clustering techniques work with distance measures

» Distance measures are not obvious to define in social networks

» Letx,y € Vbe two nodes in a social network G = (V, E). The

measure
0 (x,y)€E
d(x.y) = /
1 (ny) €E
violates the triangle inequality, hence is no distance measure
» Exchanging 0 with 1, and 1 with co does not help
» Other binary-valued measures (e.g. 1 and 1.5) agree with triangle
inequality

» But: Additional issues apply
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SOCIAL NETWORKS: CLUSTERING ISSUES

A (B) () E

Communities: A-B-C and D-E-F-G
Adopted from mmds . org
» Hierarchical Clustering: Randomly picks closest nodes/clusters
» Distance between clusters: distance between closest points
» As soon as clusters are joined on B and D, clusters not as desired

» Summary: Standard clustering techniques difficult/impossible to
sensibly implement
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BETWEENNESS

Idea: Identify edges that are least likely to be within community

DEFINITION [BETWEENNESS]
The betweenness of an edge (a, b) is

» the number of pairs of nodes (x, y) such that (2, b) makes part of
the shortest path leading from x to y

» If for (x,y) there are several shortest paths, (4, ) is credited the
fraction of shortest paths leading through (4, b) when computing
its betweenness
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BETWEENNESS

Telephone network:

Links between communities have great betweenness
Adopted from mmds . org
Explanation

» High betweenness means that (a, b) is a bottleneck for shortest paths
» If nodes (a, b) lie within community, there are too many options for
fractions)

shortest paths to circumvent (a, b) (so (a,b) gets credited only small
UNIVERSITAT
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BETWEENNESS: EXAMPLE

Adopted from mmds . org

» (B, D) has the greatest betweenness, 12

» Itis on any shortest path between A, B,Cand D, E,F,G
» (D, F) has betweenness 4

» It lies on all shortest paths between A, B,C, D and F
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GENERAL / FURTHER READING

Literature
» Mining Massive Datasets, 10.1, 10.2
http://infolab.stanford.edu/~ullman/mmds/
chl0.pdf
» Next lecture: “Social Networks I1”; 10.3, 10.5 in Mining of
Massive Datasets
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http://infolab.stanford.edu/~ullman/mmds/ch10.pdf
http://infolab.stanford.edu/~ullman/mmds/ch10.pdf

