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Reminder: Polynomial Filters on Graphs
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THE GRAPH LAPLACIAN: EXAMPLE
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Zeros are not displayed. The Laplacian depends only on the graph structure.
From https://distill.pub/2021/understanding-gnns/
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POLYNOMIALS OF THE LAPLACIAN

One can build polynomials of the Laplacian of the form
d .
pu(L) = wol, + il + wol? + ... + wyl? = wil’ (1)
i=0

where I, is the n-dimensional identity matrix.

Alternatively, each such polynomial can be represented by its vector of
coefficients
w = [wo, ..., Wy] (2

Remark:
» pu(L) is an n x n-Matrix for each w, just like L
» The p,(L) represent the equivalent of filters in CNN's
» We will see why that is...
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POLYNOMIALS OF THE LAPLACIAN II

» In the following, each node v € V stores information x, € R

» For ease of presentation only
» Everything applies also for multi-dimensional vectors

» Stack real-valued features into vector x € R”
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Collecting node information into vector.
From https://distill.pub/2021/understanding—gnns/
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POLYNOMIAL FILTERS: DEFINITION

» In the following, each node v € V stores information x, € R

» For ease of presentation only
» Everything applies also for multi-dimensional vectors

» Stack real-valued features into vector x € R"

» Convolution with a polynomial filter p,, is then defined as
x' = pu(L)x (3)

that is, by applying the matrix p,(L) € R"*" to the vector x € R"
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POLYNOMIAL FILTERS: EXAMPLES

Examples:
» w = [wy,0,...,0]:
X' = puw(L) = wolux + 0 4 ... + 0 = wox
» w=1[0,1,0,...,0]:
¥ =pu(l) = Lx

Let NV (v) is the neighborhood of v, that is all nodes attached to v via an
edge, so

X; = (Lx)v = ZLvuxu = Z(Dvu - Avu)xu = Dyoxyp — Z Xu

ueG ueG ueN (v)

» Interpretation: Features of v are combined with features of immediate
neighbors = message passing
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POLYNOMIAL FILTERS: POLYNOMIAL DEGREE

» Let dist(u, v) be the length of the shortest path between nodes u,v € V
» For example, (u,v) € E corresponds to dist(u,v) =1

» Basic calculations imply

dist 5 >‘ i li Liuv:Lx-uXLuv:O 4
ist(u,v) >i implies (L) ( ) )

i times
» Letpu(L) have polynomial degree d. One obtains

Pw v = Z w; Z vuxu Z w; Z (Li)vuxu (5)

i=0 ueV uev
distg (v,u) <i

» (5): convolution at node v only with nodes at most d hops away

Summary: Degree of localization governed by degree of polynomial filter
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POLYNOMIAL FILTERS: STACKING LAYERS

Start with the original features. Color Codes:

B Computed node embeddings.
O =g

M Learnable parameters.

Then iterate, fork = 1,2,... upto K:

p(k) =p,n (L) Compute the matrix p("') as the polynomial
“ defined by the filter weights w*) evaluated at L.

g(k) — p(k) x pE=1) Multiply p®) with h(*~1): a standard matrix-
vector multiply operation.

k) k .
h< =0 (g( )) Apply a non-linearity o to g*) to get A%,

Note: weights re-used at every node, as in CNN’s.
From https://distill.pub/2021/understanding-gnns/
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Modern GNN'’s
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MODERN GNN'’s

» Re-consider p,(L) = L, yielding

(LX o = Dyxy — Z Xy (6)
ueN (v)
» (6) decomposes into

> Aggregating over immediate neighbor features x,, u € N'(v)
» Combining with node v’s own feature x,

» Idea: Generalize by considering different kinds of aggregation
and combination steps

» Caveat: Aggregation needs to be node-order invariant

» Iteratively repeating 1-hop localized convolutions K times:
receptive field including all nodes up to K hops away
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GRAPH CONVOLUTIONAL NETWORKS (GCN'’S)

Fork=1,...,K
k-1
> A
. 0 | ) #EN®) Y Lk
h&,") = f(“ |44 b, = +B(U hil\ 2 forallv € V.
W ()|
Node v's Mean of v's Node v's
embedding at neighbour's embedding at
step k. embeddings at stepk — 1.
step k — 1.

Color Codes:
M Embedding of node v.
M Embedding of a neighbour of node v.

M (Potentially) Learnable parameters.

From https://distill.pub/2021/understanding-gnns/
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GRAPH CONVOLUTIONAL NETWORKS (GCN’s) I

> hslk 2
) (& eN Y 0 (k—1)
hE,M = f(/” w k). L + B ’71,/\ ! forallv € V.

N ()|

From https://distill.pub/2021/understanding-gnns/

» Derive predictions from Ko
» Function f ®) matrices W% B®) shared across nodes

» Dividing by |V (v)| implements normalization; alternative
normalization schemes conceivable
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GRAPH ATTENTION NETWORKS (GAN'’S)

(* k) | 1r7(k) k—1)7 (k—1) k—1) 7 (k—1)
by ) =/ w : Z a1(m )h’u + afw )h,- forallv € V.
ueN (v)
Node v's Weighted mean of Node v's
embedding at v's neighbour's embedding at
step k. embeddings at step k — 1.
stepk — 1.

for k = 1, ..., K, where normalized attention weights a¥) are generated by A®)

(8 71 (k) ()
afff) = M—Jlu) forall (v,u) € E.
AW GD BE)
weN (v)
Color Codes:

M Embedding of node v.
M Embedding of a neighbour of node v.

M (Potentially) Learnable parameters.

N From https://distill.pub/2021/understanding-gnns/
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GRAPH ATTENTION NETWORKS (GAN’S) II

}l}_"“ = f“"w (”'v/l' . l Z aLiﬁl)h,(f 1) - al()}zil)}l‘,l I"| ) forallv € V.

ueN (v)
From https://distill.pub/2021/understanding—gnns/

» Derive predictions from K

» Function f*), matrices W) and attention mechanism A®*)
(generally another neural network) shared across nodes

» Here: single-headed attention; multi-headed attention similar
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REFERENCES

» ChebNet: https://proceedings.neurips.cc/paper/2016/
file/04df4d434d481c5bb723belb6dflee65-Paper.pdf

» Graph Convolutional Networks (GCN’s):
https://openreview.net/forum?id=SJU4ayYgl

» Graph Attention Networks (GAN’s):
https://openreview.net/forum?id=rJXMpikCZz
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Global Convolutions
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GLOBAL CONVOLUTION: MOTIVATION

As before, for sake of clarity, let feature vectors x be one-dimensional.
Question:

» Letx € RV be a feature vector: how smooth is x w.r.t. G?

» In other words: how similar are features x;, x; within x for edges (i, )?

Hint:
» Normalize x such that 3, x7 = 1

» Consider the Laplacian based quantity

RY
Ru(x) = Ix _ Z(i,f)EE(Xz XJ) _ Z (xi _xj)z @)

T 2
xTx L X (Do
» Similar values for neighboring nodes imply small R (%)
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GLOBAL CONVOLUTION: MOTIVATION I1

T
L 2
Ri(x) = _ Zaperl = > (m-x)

xTx x
(i,j)€E

Laplacian Eigenvectors:

» L is areal symmetric matrix = All eigenvalues A; < ... < A, are real

» The corresponding eigenvectors uz, ..., i, can be taken orthonormal:

1 ifkh =k
whug =4 ®
0 if k1 76 kz
» One can compute
argmin  Rp(x) =u; and min Ri(x)=X (9
xxL{uy, ... ui_1} xxL{ug,..., ui_1}

i Eigenvectors u, ..., 1, are successively less smooth
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GLOBAL CONVOLUTION: MOTIVATION I1

Global Convolution: Idea
» Letuy, ..., u, be the (orthonormal) eigenvectors of L

» Intuition: According to (9), eigenvectors reflect weights on nodes
determined such that information is most smooth with respect to the
structure of the graph

» Goal: Exchange information between similar neighbors more than
between different neighbors
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GLOBAL CONVOLUTION: MOTIVATION III

Global Convolution: Idea

>

>

>

>

Knowing about (9), base convolution on suitable representations of x
over Uy, ..., Uy

In particular, according to (9), make preferable use of eigenvectors
referring to small eigenvalues

Global convolution: convolution acting on eigenvectors u; virtually acts
on all nodes simultaneously

Reminder: local convolution only refers to neighborhoods of nodes

i Consider spectral convolutions as a suitable form of global convolution
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SPECTRAL CONVOLUTIONS: FOUNDATION

» Let A := diag(\, ..., Ax) be the diagonal matrix having A\; < ... < A, on
the diagonal

» Let U be the matrix having columns uy, ..., u, (in that order)

» One obtains
L=UAU"

» The n eigenvectors uy, ..., u, form a basis, so any feature vector x can be
represented as a linear combination of the u;

n
X = E JAC;'M,‘ = Ux
i=1

where X is the vector of coefficients

» The orthonormality condition yields

x=Ux & Ux=%

UNIVERSITAT
BIELEFELD



SPECTRAL CONVOLUTIONS: PROTOCOL

» Compute spectral represenation

x=U"x=:[},..., %]
» Truncate X to first m components
x[m] := [X1, ..., Xm, 0, ..., 0] (10)
where X[m] can also be computed by

Ui]' 1<j<m

X[m] = Up,x where (Un)ij = .
0 m>j<n

U, is defined by turning the rightmost n — m columns in U to zero

» One can view \; < ... < )\, as frequencies:

> Lower frequencies capture basic, globally applicable relationships
» Higher frequencies capture local details
» Omitting higher frequencies omits details, but keeps global structure
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SPECTRAL CONVOLUTIONS: PROTOCOL II

U; 1<i<
X[m) = Uyx where (Un)j=<{ " ~— J=m
0 m>j<n

where U, has rightmost n — m columns in U turned to zero
» This virtually turns the original x into

x[m] == U-x[m] = U - Upx = Uy, - Upx

» x[m] can be considered an approximation of x that optimally caters to
global convolution

» Because relying small eigenvalues (i.e. “small frequencies”):

x[m] still captures all essential structure of x
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SPECTRAL REPRESENTATIONS: EXAMPLES

Keep First 20 Spectral Components

Original Image = Transformed Image z’
Number of Spectral Components (m)

® 20

Approximation using first 20 eigenvectors
From https://distill.pub/2021/understanding-gnns/
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SPECTRAL REPRESENTATIONS: EXAMPLES

Keep First 50 Spectral Components "

Original Image = Transformed Image z'
Number of Spectral Components (m)

o 50
Approximation using first 50 eigenvectors

From https://distill.pub/2021/understanding—gnns/
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SPECTRAL REPRESENTATIONS: EXAMPLES

Keep First 100 Spectral Components g

Original Image = Transformed Image '
Number of Spectral Components (m)

° 100

Approximation using first 100 eigenvectors
From https://distill.pub/2021/understanding—gnns/
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SPECTRAL REPRESENTATIONS: EXAMPLES

Keep First 200 Spectral Components g

Original Image & Transformed Image '
Number of Spectral Components (m)

) 200
Approximation using first 200 eigenvectors

From https://distill.pub/2021/understanding—gnns/
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SPECTRAL REPRESENTATIONS: EXAMPLES

Keep First 500 Spectral Components g

Original Image Transformed Image
Number of Spectral Components (m)

Y 500

Approximation using first 500 eigenvectors
From https://distill.pub/2021/understanding-gnns/
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SPECTRAL REPRESENTATIONS: EXAMPLES

Keep First 1000 Spectral Components'

Original Image = Transformed Image z’
Number of Spectral Components (m)

® 1000

Approximation using first 1000 eigenvectors
From https://distill.pub/2021/understanding-gnns/
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SPECTRAL REPRESENTATIONS: EXAMPLES

Keep All 2000 Spectral Components g

Original Image = Transformed Image '
Number of Spectral Components (m)

@ 2000
Approximation using all 2000 eigenvectors

From https://distill.pub/2021/understanding—gnns/
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SPECTRAL CONVOLUTION GNN: PROTOCOL

» Consider a GNN having K layers

» Computing layer k + 1 from layer k,k =0, ..., K — 1, the GNN
immplements spectral (global) convolution

> Let
s, W =1

be the vector storing node information in layer k where
W =x

is the original node information vector

UNIVERSITAT
BIELEFELD



SPECTRAL CONVOLUTION GNN: PROTOCOL

Start with the original features.

O =g

Then iterate, for k = 1,2,. .. upto K:

;L(k—l) _ U,ﬂh“‘ 1)
§® =" @ pkb

g™ =U,g"®

B0 = o (g<k))

Color Codes:
M Computed node embeddings.

M Learnable parameters.

Convert previous feature (1) to its spectral representation A®*~1).

Convolve with filter weights (%) in the spectral domain to get g@
@© represents element-wise multiplication.

Convert g}(k) back to its natural representation g("').

Apply a non-linearity o to g“‘> to get h\F).

Pass in spectral GNN from layer k to layer k + 1
Only m parameters required: @*) consists of only n weights

From https://distill.pub/2021/understanding-gnns/
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Thanks for your attention!
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