Mining Data Streams II

Alexander Schonhuth

UNIVERSITAT
BIELEFELD

BN Faculty of Technology

Bielefeld University
May 19, 2022

TODAY

Mining Data Streams II: Overview

» Counting Ones in a Window:
1 Datar-Gionis-Indyk-Motwani algorithm

» Decaying Windows

Learning Goals: Understand these topics and get familiarized

UNIVERSITAT
BIELEFELD

Counting Ones in a Window
The Datar-Gionis-Indyk-Motwani Algorithm

UNIVERSITAT
BIELEFELD

DATA STREAM MANAGEMENT SYSTEM

Ad-hoc

Queries
Streams entering ¢
1,5,2,7,4,0,3,5 Standing Output streams

q.w,e,r,ty,uio —= Queries

0,1,1,0,1,0,0,0 —™ s

tream

Processor

-— time

Limited
Working
Storage

Archival

Storage

A data stream management system
Adopted from mmds . org

UNIVERSITAT
BIELEFELD

DATA STREAM QUERIES

Issues
» Streams deliver elements rapidly: need to act quickly
» Thus, data to work on should fit in main memory
» New techniques required:
1= Compute approximate, not exact answers
1= Hashing is a useful technique

UNIVERSITAT
BIELEFELD

COUNTING ONES IN WINDOW: PROBLEM
, £ =
X € i" ¢ 4%

- X
o ¥e Xega o (TN

» Suppose we have a window of length N on a binary stream
» Query: “how many ones are there in the last k < N bits?”

» We cannot afford to store entire window

» Approximate algorithms required

Xn

» Situation:

» Present solution for binary streams first

» Discuss extension for summing numbers (from a stream of
numbers) thereafter

UNIVERSITAT
BIELEFELD

THE COST OF EXACT COUNTS

» One needs to store N bits to answer count-one-queries for
arbitrary k < N:

» Assume one could use less than N bits
» We need 2V different representations to represent all possible 2N
bit strings of length N
» Since we use less than N bits, there are two different bit strings
w # x, for which we use the same representation
» Let k be the first bit from the right where w and x disagree
» Example:
» For w = 0101, x = 1010, we have k = 1
» Forw = 1001, x = 0101, we have k = 3
» So the counts of ones in the window of length k for w and x differ
» But because we use identical representations for w and x, we will
output the same count
» This proves that one needs the full N bits to represent bit strings
for exact count-one-queries.

UNIVERSITAT
BIELEFELD

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

@/“"‘Xt/%cf/(0o %/“\
» Situation: W !e,muesEmp

» We consider a binary stream: elements are bits
» Let each element of the stream have a timestamp

» The first, leftmost element has timestamp 1, the second leftmost
has timestamp 2, and so on

» Goal: We like to count the ones among the N most recent
(rightmost) elements /bits N - 10¢

3
» Space requirements: EAOOS(/"’M ¢ ey e--,10

» Storing timestamps modulo N, and o
» marking rightmost timestamp as most recent
» allows to store positions of individual bits using log, N bits

X
Xa o Xe /"&@'Egzm I C\‘N7

UNIVERSITAT
BIELEFELD

THE DATAR—GIONIS—IND'B{K—MOTWANI ALGORITHM

[
C)/\Q/lE”I@q@O@QJ’\ -
Fboetr > Gomishonp of gl
RA
» Algorithm: Divide window into buckets, contiguous bit substrings
» Bucket Representation: For identifying buckets, we store

» The timestamp of its right end, and
» The size of the bucket, as the number of 1’s in the bucket
» The size is supposed to be a power of 2

» Bucket Space Requirements:

> Timestamp requires log, N bits
» Size is 2/, hence requires log log, N bits (by storing log, j bits)
» Requires O(log N) bits overall

\ . j\é Q
SM@ %UQM L Eé‘h@*gf\ij é\y] /L; JY
wlome 2N
s z j< Loy N

DATAR-GIONIS-INDYK-MOTWANI RULES

.1011011000101110110010110

‘ ...lOlHlOl10001‘0‘11101‘1001‘0

M

At least one 8 One of Two of
¢ Two of size 4 . .
of size 8 size 2 size 1

Bit stream divided into buckets following DGIM rules

From mmds.org

Right end alwaysisa 1

Every 1 of the window is in some bucket
Buckets do not overlap

All sizes must be a power of 2

For each possible size, there are either one or two buckets

vV vy vy VvV VvYyy

Size of buckets cannot decrease when moving

UNIVERSITAT
BIELEFELD

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Key Ideas / Considerations

» The number of buckets representing a window must be small

» Estimate the number of 1’s in the last k bits (for any k) with an error of
no more than 50%

» How to maintain the DGIM Bucket Rules on new bits arriving?

UNIVERSITAT
BIELEFELD

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Storage Requirements

» Each bucket can be represented using O(log N) bits
> Let 2 be size of largest bucket: 2/ < N implies j < log, N

» So there are at most 2 buckets of sizes 2, j=1log,N,...,1

» This means that there are O(log N) buckets

» Each bucket being represented by O(log N) bits requires O(log” N)
space overall

UNIVERSITAT
BIELEFELD

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

.1011011000101110110010110

‘ ..‘101H10110001‘0‘11101‘1001‘00
¢ < o

At least one Two of size 4 Qne of T}vo of
of size 8 size 2 size 1

Bit stream divided into buckets following DGIM rules

From mmds.org

Answering Queries

» Let1 <k < N: how many 1’s are among the last k bits?

» Answer:

» Find leftmost (= with earliest timestamp) bucket b containing
some of last k bits
» Estimate: Sum of sizes of buckets right of b plus half the size of b

UNIVERSITAT
BIELEFELD

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

.1011011000101110110010110

‘ ...101H10110001‘0‘11101‘1001‘0’?“7‘0

At least one . One of Two of
e Two of size 4 . .
of size 8 size 2 size 1

Bit stream divided into buckets following DGIM rules

From mmds.org

Example

» Letk = 10: how many 1’s are among 0110010110?
» Let t be timestamp of rightmost bit

» Two buckets with one 1 each, having timestamps t — 1, t — 2 are fully included in
k righmost bits

» Bucket of size 2 with timestamp t — 4 is also included
» Bucket of size 4 with timestamp t — 8 is only partially included

» Esti : _
LB’I’I‘EL‘{EE:'ESLISKESUmate. 1+142+(1/2 x 4) = 6, one more than true count

DGIM: ERROR OF ESTIMATE
T A L A z 0.0
e o <o

.1011011000101110110010110

‘ ...lOlHlOl10001‘0‘11101‘1001‘00

!
At least one Two of size 4 One of Two of

of size 8 size 2 size 1
Bit stream divided into buckets following DGIM rules
From mmds.org

AOA 4 0raq 0110 C -
Case 1: estimate is less than ¢

Y
» Let ¢ be true count; let leftmost bucket b be of size 2/ Bzze ~ j S to
» Worst case: all 1’s in b are among k most recent bits true ¢ owJ\
> i i j = /-1
So, estimate is lower by 1/2 x 2/ = 2/~ than ¢ 8 ‘fo’ hve

» Because c > 2, error is at most half of ¢ C%V

eshele ¢ fov asbsle

UNIVERSITAT
BIELEFELD

DGIM: ERROR OF ESTIMATE

.1011011000101110110010110

‘ ...lOlHlOl10001‘0‘11101‘1001‘00

At least one 8 One of Two of
¢ Two of size 4 . .
of size 8 size 2 size 1

Bit stream divided into buckets following DGIM rules

From mmds.org
(Mo110117 0 4}\(@

———

Case 2: estimate is larger than c 4 Y

» Let ¢ be true count; let leftmost bucket b be of size 2/ /g

Worst case: only rightmost bit of b is among k most recent bits, and

There is only one bucket for each of sizes 2-1 .1 n R

Thatyieldsc =1+2"1+ .. +1=1+2-1=2 Z - ZMM“/[

Estimateis 27~ +2~1 4+ .. +1=2"14+2 1,50 =0

271401
2

vV vyyvyywy

» Error

UNIVERSITAT
BIELEFELD

is no greater than 50% of true count

MAINTAINING DGIM RULES

Upon a new bit with timestamp ¢ having arrived:

» Check timestamp s of leftmost bucket b:
» ifs <t — N, drop b from list of buckets

» If the new bit is 0, do nothing
» If the new bitis 1, do

» Create new bucket with timestamp t and size 1
» On increasing size, starting with size 1, while there are three buckets of the
same size, do

» keep the rightmost bucket of that size as is
> join the two left buckets into one of double the size
» where the timestamp is that of the rightmost bit

» For example: joining the two left of the three buckets of size 1 into a bucket
of size 2 may create a third bucket of size 2, and so on
» Runtime: Need to look at O(log N) buckets, joining is constant time, so
processing new bit requires O(log N) time overall

UNIVERSITAT
BIELEFELD

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM
PART VI

.1011011000101110110010110

| ...lOlHlOllOOO1‘0‘11101”1001‘00

At least one . One of Two of
‘ Two of size 4 . .
of size 8 size 2 size 1
‘ . .10 lHl 011000 1‘ |l 110 1Hl 00 1|0 11 O,
At least one \ Two of One of
Two of size 4
of size 8 size 2 size 1

Bit stream divided into buckets following DGIM rules (top), with new 1 arriving
(bottom)
From mmds.org

UNIVERSITAT
BIELEFELD

DGIM ALGORITHM: REDUCING THE ERROR

» For some r > 2, allow either r or ¥ — 1 buckets of the same size

» Allow this for all but size 1 and largest size, whose numbers may be
anyof1,..,r

» Compute estimate as before

» Extend maintaining the DGIM Bucket Rules in the obvious way

» Recall: largest error 2714921 s made when only one 1 from leftmost

bucket b was within window

» New error:

» True countis at most 1 + (r — DRI+ +D)=1+-1)(2 -1)
> Estimateis 21 4 (r — 1)(2/ — 1), difference between estimate and true
count is 27— — 1, so fractional error is

2-1 -1
1+ (r—1)2-1)

which is upper bounded by 1/2(r — 1)
» Picking large r can limit error to any ¢ > 0

UNIVERSITAT
BIELEFELD

DGIM ALGORITHM: EXTENSIONS

» DGIM can be extended to integers instead of bits

» Question is to estimate the sum of last k < N integers from a window of
N integers overall

» However, DGIM cannot be extended to streams containing negative

integers "
& o 271
» Consider case of integers in range of € to 2", so represented by m bits
» Solution: M T O/'Oi /Ioo(O/l/\(Qo 110 /774'--’

» Treat each bit of integers as separate stream
» Apply DGIM algorithm to each of m streams, yielding estimate c; for i-th

stream Stvernmd. 010011
> ;. .

Overall estimate: - “ 4101019
Zcizi ¢ 1;001401
i=0

Co Ca(Cy

» If error is at most € for all i, overall error is also at most €

UNIVERSITAT
BIELEFELD

Most Common Elements

Decaying Windows

UNIVERSITAT
BIELEFELD

DECAYING WINDOWS: MOTIVATION

» Stream: Movie tickets purchased all over the world
» Goal: Listing currently most “popular” movies

» Currently popular:

» Movie that sold plenty of tickets years ago not to be listed

» Movie that sold 2 tickets last week, for large n, currently popular
» Movie that sold n tickets in last 10 weeks is even more popular

» How to grasp that idea?

UNIVERSITAT
BIELEFELD

DECAYING WINDOWS: MOTIVATION

» Stream: Movie tickets purchased all over the world

» Goal: Listing currently most “popular” movies

» Possible solution:

>
»

>

UNIVERSITAT
BIELEFELD

One bit stream for each movie
The i-th bit in a movie stream is 1 if the i-th ticket was for that
movie
Pick window of size N, where N is to reflect tickets to be recent
Estimate number of ones in each stream

» Use Datar-Gionis-Indyk-Motwani (DGIM) algorithm, for

example
» Estimates number of tickets sold for each movie

Rank movies by the estimated counts
M. Od o4 ., -
Hz(. /{ O o O PN
M3 o140 -

DECAYING WINDOWS: MOTIVATION

» Possible solution, summary:

» One bit stream for each movie

» i-th bit in a movie stream is 1 iff i-th ticket was for that movie
» Count number of ones in each stream...

» ... counts tickets for each movie

» Rank movies by ticket counts

» Works for movies, because there only thousands of movies

» Drawback:

» Does not work for items at Amazon or tweets per Twitter-user
» = too many items or users

UNIVERSITAT
BIELEFELD

DECAYING WINDOWS: MOTIVATION

» Stream: Movie tickets purchased all over the world
» Goal: Listing currently most “popular” movies

» Alternative approach:

» Do not count ones in fixed-size window

» Rather, compute “smooth aggregation” of all ones in stream

» Smooth: use weights to rate stream elements in terms of
recentness

» The further back in the stream, the less weight given

(\[r\,‘K‘é'(.»r« \(

UNIVERSITAT
BIELEFELD

EXPONENTIALLY DECAYING WINDOW: DEFINITION

DEFINITION [EXPONENTIALLY DECAYING WINDOW]:
» Letay,ay,...,a; be a stream, with a; most recent element
» Let ¢ be small constant, e.g. ¢ € [107%,1079)

The exponentially decaying window for the stream is defined to be the
sum

t—1
S a1 —cf M)
i=0

we,‘adQJ s @\QDL

-éLe_ uﬂuﬁ-('{‘o GCL Q&f?
ao He 3"“’“® L (
UNIVERSITAT

EXPONENTIALLY DECAYING WINDOW: DEFINITION

- Window of
length 1/c

—_—

Decaying window and fixed-length window of equal weight

From mmds.org

» Decaying window puts weight (1 — ¢)’ on (t — i)-th element
» A window of length 1/c puts equal weight 1 on the first 1/c elements

» Both principles distribute the same weight to stream elements overall

UNIVERSITAT
BIELEFELD

UPDATING EXPONENTIALLY DECAYING WINDOWS

Upon arrival of a new element 4,1, one updates the exponentially
. . t—1 i
decaying window) ;" a;—;(1 — ¢)' by

1. multiplying the current window by (1 — ¢), yielding

t—1 '
Z a—i(1 — C)Z—H
i=0

2. adding a;11, yielding

t—1 (t+1)—1

Zﬂtﬂ'(l —o) = Z a1y -i(1—c)

i=0 i=0

UNIVERSITAT
BIELEFELD

EXPONENTIALLY DECAYING WINDOWS:
FINDING MOST POPULAR MOVIES

» Most Popular Movies: Idea

» Have a bit stream for each movie, as before
> Usee.g. c= 1077 (= sliding window of size 1/c = 10%)
» On incoming movie ticket sale, update all decaying windows, as described
above
» First, multiply all decaying windows by 1 — ¢
» Add 1 for stream of the movie of the ticket; if there is no stream for
that movie, create one
» Do nothing (add 0) for all other streams
» If any decaying window drops below threshold of 1/2, drop window
» Because the sum of all scores is 1/c, there cannot be more than 2/c movies
with score of 1/2 or more
» So, 2/c is limit on number of movies being tracked at any time
» In practice, there should be much less movies counted

» Therefore, one can apply the technique also for Amazon items and
Twitter-users

UNIVERSITAT
BIELEFELD

MATERIALS / OUTLOOK

» See Mining of Massive Datasets, chapter 4.6, 4.7

» Asusual, see http://www.mmds.org/ in general for further
resources

» Next lecture: “Link Analysis 1”
» See Mining of Massive Datasets 5.1-5.5

UNIVERSITAT
BIELEFELD

