
Mining Data Streams II

Alexander Schönhuth

Bielefeld University
May 19, 2022

TODAY

Mining Data Streams II: Overview

I Counting Ones in a Window:
+ Datar-Gionis-Indyk-Motwani algorithm

I Decaying Windows

Learning Goals: Understand these topics and get familiarized

Counting Ones in a Window

The Datar-Gionis-Indyk-Motwani Algorithm

DATA STREAM MANAGEMENT SYSTEM

A data stream management system

Adopted from mmds.org

DATA STREAM QUERIES

Issues
I Streams deliver elements rapidly: need to act quickly
I Thus, data to work on should fit in main memory
I New techniques required:
+ Compute approximate, not exact answers
+ Hashing is a useful technique

COUNTING ONES IN WINDOW: PROBLEM

I Situation:

I Suppose we have a window of length N on a binary stream
I Query: “how many ones are there in the last k  N bits?”
I We cannot afford to store entire window
I Approximate algorithms required

I Present solution for binary streams first

I Discuss extension for summing numbers (from a stream of
numbers) thereafter

ok ≤ N
✗ i c- {0 in } f)

✗ ^ .
.
-

' ✗ c- i"ia÷:jÉN_

THE COST OF EXACT COUNTS

I One needs to store N bits to answer count-one-queries for
arbitrary k  N:

I Assume one could use less than N bits
I We need 2N different representations to represent all possible 2N

bit strings of length N

I Since we use less than N bits, there are two different bit strings
w 6= x, for which we use the same representation

I Let k be the first bit from the right where w and x disagree
I Example:

I For w = 0101, x = 1010, we have k = 1
I For w = 1001, x = 0101, we have k = 3

I So the counts of ones in the window of length k for w and x differ
I But because we use identical representations for w and x, we will

output the same count
I This proves that one needs the full N bits to represent bit strings

for exact count-one-queries.

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

I Situation:

I We consider a binary stream: elements are bits

I Let each element of the stream have a timestamp

I The first, leftmost element has timestamp 1, the second leftmost
has timestamp 2, and so on

I Goal: We like to count the ones among the N most recent
(rightmost) elements/bits

I Space requirements:

I Storing timestamps modulo N, and
I marking rightmost timestamp as most recent
I allows to store positions of individual bits using log2 N bits

④ i
- - -

- I
✗
t i i - - - -

I
✗
M

Ittimestamp

N - 108

[1000,1001 , .
-

. i r
- -

s?,
^
, -

✗
n i

-
-
- I
✗
c- i

-

-

een
- - -

l
✗
et N]

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

I Algorithm: Divide window into buckets, contiguous bit substrings

I Bucket Representation: For identifying buckets, we store
I The timestamp of its right end, and
I The size of the bucket, as the number of 1’s in the bucket
I The size is supposed to be a power of 2

I Bucket Space Requirements:

I Timestamp requires log2 N bits
I Size is 2j, hence requires log log2 N bits (by storing log2 j bits)
I Requires O(logN) bits overall

oronkflorioooontbockef-t.im Shemp of night
end

log dogNStony bruder : [timestamp
,

Li]
where zj ≤ N

↑

j ≤ log
,

N

DATAR-GIONIS-INDYK-MOTWANI RULES

Bit stream divided into buckets following DGIM rules
From mmds.org

I Right end always is a 1
I Every 1 of the window is in some bucket
I Buckets do not overlap
I All sizes must be a power of 2
I For each possible size, there are either one or two buckets
I Size of buckets cannot decrease when moving

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Key Ideas / Considerations

I The number of buckets representing a window must be small
I Estimate the number of 1’s in the last k bits (for any k) with an error of

no more than 50%
I How to maintain the DGIM Bucket Rules on new bits arriving?

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Storage Requirements

I Each bucket can be represented using O(logN) bits
I Let 2j be size of largest bucket: 2j < N implies j  log2 N

I So there are at most 2 buckets of sizes 2j, j = log2 N, ..., 1
I This means that there are O(logN) buckets
I Each bucket being represented by O(logN) bits requires O(log2

N)
space overall

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Bit stream divided into buckets following DGIM rules
From mmds.org

Answering Queries

I Let 1  k  N: how many 1’s are among the last k bits?

I Answer:

I Find leftmost (= with earliest timestamp) bucket b containing
some of last k bits

I Estimate: Sum of sizes of buckets right of b plus half the size of b

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Bit stream divided into buckets following DGIM rules
From mmds.org

Example

I Let k = 10: how many 1’s are among 0110010110?
I Let t be timestamp of rightmost bit
I Two buckets with one 1 each, having timestamps t � 1, t � 2 are fully included in

k righmost bits
I Bucket of size 2 with timestamp t � 4 is also included
I Bucket of size 4 with timestamp t � 8 is only partially included
I Estimate: 1 + 1 + 2 + (1/2 ⇥ 4) = 6, one more than true count

DGIM: ERROR OF ESTIMATE

Bit stream divided into buckets following DGIM rules
From mmds.org

Case 1: estimate is less than c

I Let c be true count; let leftmost bucket b be of size 2j

I Worst case: all 1’s in b are among k most recent bits
I So, estimate is lower by 1/2 ⇥ 2j = 2j�1 than c

I Because c � 2j, error is at most half of c

estimate c-{ = 1 -

2J
- t

=~≤ o.si
◦ -5

G÷c
] [

.
. . . .

Tk
belongs to
true cont

8 for true
can

estimate 4 for estimate

DGIM: ERROR OF ESTIMATE

Bit stream divided into buckets following DGIM rules
From mmds.org

Case 2: estimate is larger than c

I Let c be true count; let leftmost bucket b be of size 2j

I Worst case: only rightmost bit of b is among k most recent bits, and
I There is only one bucket for each of sizes 2j�1, ..., 1
I That yields c = 1 + 2j�1 + ...+ 1 = 1 + 2j � 1 = 2j

I Estimate is 2j�1 + 2j�1 + ...+ 1 = 2j�1 + 2j � 1, so

I Error 2j�1+2j�1
2j

is no greater than 50% of true count

[10110117011T¥I

h

£22:-. I"-1
into

MAINTAINING DGIM RULES

Upon a new bit with timestamp t having arrived:

I Check timestamp s of leftmost bucket b:
I if s  t � N, drop b from list of buckets

I If the new bit is 0, do nothing

I If the new bit is 1, do
I Create new bucket with timestamp t and size 1
I On increasing size, starting with size 1, while there are three buckets of the

same size, do
I keep the rightmost bucket of that size as is
I join the two left buckets into one of double the size
I where the timestamp is that of the rightmost bit

I For example: joining the two left of the three buckets of size 1 into a bucket
of size 2 may create a third bucket of size 2, and so on

I Runtime: Need to look at O(logN) buckets, joining is constant time, so
processing new bit requires O(logN) time overall

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM
PART VI

Bit stream divided into buckets following DGIM rules (top), with new 1 arriving
(bottom)

From mmds.org

DGIM ALGORITHM: REDUCING THE ERROR

I For some r > 2, allow either r or r � 1 buckets of the same size
I Allow this for all but size 1 and largest size, whose numbers may be

any of 1, ..., r

I Compute estimate as before
I Extend maintaining the DGIM Bucket Rules in the obvious way

I Recall: largest error 2j�1+2j�1
2j

was made when only one 1 from leftmost
bucket b was within window

I New error:

I True count is at most 1 + (r � 1)(2j�1 + ...+ 1) = 1 + (r � 1)(2j � 1)
I Estimate is 2j�1 + (r � 1)(2j � 1), difference between estimate and true

count is 2j�1 � 1, so fractional error is

2j�1 � 1
1 + (r � 1)(2j � 1)

which is upper bounded by 1/2(r � 1)
I Picking large r can limit error to any ✏ > 0

DGIM ALGORITHM: EXTENSIONS

I DGIM can be extended to integers instead of bits
I Question is to estimate the sum of last k  N integers from a window of

N integers overall
I However, DGIM cannot be extended to streams containing negative

integers
I Consider case of integers in range of 1 to 2m, so represented by m bits

I Solution:

I Treat each bit of integers as separate stream
I Apply DGIM algorithm to each of m streams, yielding estimate ci for i-th

stream
I Overall estimate:

m�1X

i=0

ci2i

I If error is at most ✏ for all i, overall error is also at most ✏

0 271
B E

M =3 : 040
,
100

,
0^1

, 00^1770 ,
777

,
- - -

stream0
_ 070077

a 1¥ ^ 01071

" 2=007701

Co
,
Cr

[C2

Most Common Elements

Decaying Windows

DECAYING WINDOWS: MOTIVATION

I Stream: Movie tickets purchased all over the world

I Goal: Listing currently most “popular” movies

I Currently popular:

I Movie that sold plenty of tickets years ago not to be listed
I Movie that sold 2n tickets last week, for large n, currently popular
I Movie that sold n tickets in last 10 weeks is even more popular
I How to grasp that idea?

DECAYING WINDOWS: MOTIVATION

I Stream: Movie tickets purchased all over the world

I Goal: Listing currently most “popular” movies

I Possible solution:

I One bit stream for each movie
I The i-th bit in a movie stream is 1 if the i-th ticket was for that

movie
I Pick window of size N, where N is to reflect tickets to be recent
I Estimate number of ones in each stream

I Use Datar-Gionis-Indyk-Motwani (DGIM) algorithm, for
example

I Estimates number of tickets sold for each movie
I Rank movies by the estimated counts

,

M1 :
001

.
. . -

M2 : 1000 a . . .

M3 : 01 TO a
-
.

-
-

DECAYING WINDOWS: MOTIVATION

I Possible solution, summary:

I One bit stream for each movie
I i-th bit in a movie stream is 1 iff i-th ticket was for that movie
I Count number of ones in each stream...
I ... counts tickets for each movie
I Rank movies by ticket counts

I Works for movies, because there only thousands of movies

I Drawback:

I Does not work for items at Amazon or tweets per Twitter-user
I + too many items or users

DECAYING WINDOWS: MOTIVATION

I Stream: Movie tickets purchased all over the world

I Goal: Listing currently most “popular” movies

I Alternative approach:

I Do not count ones in fixed-size window
I Rather, compute “smooth aggregation” of all ones in stream
I Smooth: use weights to rate stream elements in terms of

recentness
I The further back in the stream, the less weight given

✗
7 I r

-
_

I £ [
- - r '

1 M
W
? I i - i - i wt , r r e .

* arm
way ≤ W2≤ r - r

n - ≤ wtf . . _ FWM

EXPONENTIALLY DECAYING WINDOW: DEFINITION

DEFINITION [EXPONENTIALLY DECAYING WINDOW]:
I Let a1, a2, ..., at be a stream, with at most recent element

I Let c be small constant, e.g. c 2 [10�9, 10�6]

The exponentially decaying window for the stream is defined to be the
sum

t�1X

i=0

at�i(1 � c)i (1)

weight is @ - c)
i

C-he fumbles to the left ,
the greater E

EXPONENTIALLY DECAYING WINDOW: DEFINITION

Decaying window and fixed-length window of equal weight
From mmds.org

I Decaying window puts weight (1 � c)i on (t � i)-th element
I A window of length 1/c puts equal weight 1 on the first 1/c elements
I Both principles distribute the same weight to stream elements overall

UPDATING EXPONENTIALLY DECAYING WINDOWS

Upon arrival of a new element at+1, one updates the exponentially
decaying window

P
t�1
i=0 at�i(1 � c)i by

1. multiplying the current window by (1 � c), yielding

t�1X

i=0

at�i(1 � c)i+1

2. adding at+1, yielding

t�1X

i=0

at�i(1 � c)i+1 + at+1 =

(t+1)�1X

i=0

a(t+1)�i(1 � c)i

EXPONENTIALLY DECAYING WINDOWS:
FINDING MOST POPULAR MOVIES

I Most Popular Movies: Idea

I Have a bit stream for each movie, as before
I Use e.g. c = 10�9 (⇡ sliding window of size 1/c = 109)
I On incoming movie ticket sale, update all decaying windows, as described

above
I First, multiply all decaying windows by 1 � c

I Add 1 for stream of the movie of the ticket; if there is no stream for
that movie, create one

I Do nothing (add 0) for all other streams
I If any decaying window drops below threshold of 1/2, drop window
I Because the sum of all scores is 1/c, there cannot be more than 2/c movies

with score of 1/2 or more
I So, 2/c is limit on number of movies being tracked at any time
I In practice, there should be much less movies counted

I Therefore, one can apply the technique also for Amazon items and
Twitter-users

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 4.6, 4.7

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Link Analysis I”
I See Mining of Massive Datasets 5.1–5.5

