Map Reduce / Workflow Systems I

Alexander Schonhuth

UNIVERSITAT
BIELEFELD

B Faculty of Technology

Bielefeld University
April 28, 2022

LEARNING GOALS TODAY

» Understand the technical challenges of parallelism / multi-node
computation

UNIVERSITAT
BIELEFELD

LEARNING GOALS TODAY

» Understand the technical challenges of parallelism / multi-node
computation

» Understand the MapReduce paradigm

UNIVERSITAT
BIELEFELD

LEARNING GOALS TODAY

» Understand the technical challenges of parallelism / multi-node
computation

» Understand the MapReduce paradigm

» Understand how to put the paradigm into effect in practice

UNIVERSITAT
BIELEFELD

LEARNING GOALS TODAY

» Understand the technical challenges of parallelism / multi-node
computation

» Understand the MapReduce paradigm
» Understand how to put the paradigm into effect in practice

» Understand the fundamental algorithms supported by
MapReduce

UNIVERSITAT
BIELEFELD

Map Reduce: Introduction

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION I

CPU

Memory

Machine Learning, Statistics

Adopted from mmds . org

UNIVERSITAT
BIELEFELD

» Machine Learning, Statistics: all data fits in main memory

MAPREDUCE: MOTIVATION I

CPU

Memory

@

Machine Learning, Statistics

‘Classical” Data Mining

Adopted from mmds . org

UNIVERSITAT
BIELEFELD

» Machine Learning, Statistics: all data fits in main memory
» Classical Data Mining: data too big to fit in main memory

MAPREDUCE: MOTIVATION II

» Need to manage massive amounts of data quickly

» Within one particular application, data is massive

» For example (web searches), even with high performance disk read
bandwidth, just reading 10 billion web pages requires several days

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION II

» Need to manage massive amounts of data quickly

» Within one particular application, data is massive

» For example (web searches), even with high performance disk read
bandwidth, just reading 10 billion web pages requires several days

» But operations can be very regular (do the same thing to each web
page) = exploit the parallelism

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION II

» Need to manage massive amounts of data quickly

» Within one particular application, data is massive

» For example (web searches), even with high performance disk read
bandwidth, just reading 10 billion web pages requires several days

» But operations can be very regular (do the same thing to each web
page) = exploit the parallelism

» Many operations on databases (as supported by SQL, for example) can
and need to be parallelized

» Ranking web pages (“PageRank”) requires iterated multiplication of
matrices with dimensions in the billions

» Searching for “friend networks” in social networks require operations on
graphs with billions of nodes and edges

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION II

» New software stack: get parallelism not from single
supercomputer, but from computing clusters

» First, need to deal with storing data
i Distributed file systems (hardware based issues/solutions)

UNIVERSITAT

BIELEFELD

MAPREDUCE: MOTIVATION II

» New software stack: get parallelism not from single
supercomputer, but from computing clusters

» First, need to deal with storing data
i Distributed file systems (hardware based issues/solutions)

» Second, new higher-level programming systems required
w& MapReduce

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION II

» New software stack: get parallelism not from single
supercomputer, but from computing clusters

» First, need to deal with storing data
i Distributed file systems (hardware based issues/solutions)

» Second, new higher-level programming systems required
w& MapReduce

» Third, MapReduce reflects early attempts: % More sophisticated
workflow systems

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION II

» New software stack: get parallelism not from single
supercomputer, but from computing clusters

» First, need to deal with storing data
i Distributed file systems (hardware based issues/solutions)

» Second, new higher-level programming systems required
w& MapReduce

» Third, MapReduce reflects early attempts: % More sophisticated
workflow systems

» Here, we will deal predominantly with MapReduce first

» We will also consider most advanced workflow systems

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION II

» New software stack: get parallelism not from single
supercomputer, but from computing clusters

» First, need to deal with storing data
i Distributed file systems (hardware based issues/solutions)

» Second, new higher-level programming systems required
w& MapReduce

» Third, MapReduce reflects early attempts: % More sophisticated
workflow systems

» Here, we will deal predominantly with MapReduce first
» We will also consider most advanced workflow systems

» Reminder: it’s about analytics in this course

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION III

» MapReduce enables convenient execution of parallelizable
operations on compute clusters and clouds

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION III

» MapReduce enables convenient execution of parallelizable
operations on compute clusters and clouds

» MapReduce executes such operations in a fault-tolerant manner

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION III

» MapReduce enables convenient execution of parallelizable
operations on compute clusters and clouds

» MapReduce executes such operations in a fault-tolerant manner

» MapReduce is the origin of more general ideas

» Systems supporting acyclic workflows in general
» Systems supporting recursive operations

UNIVERSITAT
BIELEFELD

MAPREDUCE: MOTIVATION III

1 Gbps between
any pair of nodes
inarack
Switch
CPU CPU
Mem . Mem
— —
Disk Disk

Each rack contains 16-64 nodes

Adopted from mmds . org
UNIVERSITAT
BIELEFELD

N

MAPREDUCE: MOTIVATION III

2-10 Gbps backbone between racks
1 Gbps between

any pair of nodes

in a rack
CPU | cpu | | cpu | CPU
Mem ‘ Mem ‘ ‘ Mem l e Mem

Each rack contains 16-64 nodes

Adopted from mmds . org

UNIVERSITAT
BIELEFELD

i
N)
yel
2

Distributed File Systems

UNIVERSITAT
BIELEFELD

DISTRIBUTED FILE SYSTEMS: CHALLENGES AND
CHARACTERISTICS

» Node Failure: Single nodes fail (e.g. by disk crash) or entire racks
can fail (e.g. by network failure)
= no starting over every time: back up data

UNIVERSITAT
BIELEFELD

DISTRIBUTED FILE SYSTEMS: CHALLENGES AND
CHARACTERISTICS

» Node Failure: Single nodes fail (e.g. by disk crash) or entire racks
can fail (e.g. by network failure)
= no starting over every time: back up data

» File Size: can be huge
1= how to distribute them?

UNIVERSITAT
BIELEFELD

DISTRIBUTED FILE SYSTEMS: CHALLENGES AND
CHARACTERISTICS

» Node Failure: Single nodes fail (e.g. by disk crash) or entire racks
can fail (e.g. by network failure)
= no starting over every time: back up data

» File Size: can be huge
1= how to distribute them?

» Computation Time: should not be dominated by input/output
i data should be as close as possible to compute nodes

UNIVERSITAT
BIELEFELD

DISTRIBUTED FILE SYSTEMS: CHALLENGES AND
CHARACTERISTICS

» Node Failure: Single nodes fail (e.g. by disk crash) or entire racks
can fail (e.g. by network failure)
= no starting over every time: back up data

» File Size: can be huge
1= how to distribute them?

» Computation Time: should not be dominated by input/output
i data should be as close as possible to compute nodes

» Data: does not change, new data only makes small appends
1= otherwise DFS not suitable

UNIVERSITAT
BIELEFELD

DISTRIBUTED FILE SYSTEMS: SUMMARY

» Data is divided into chunks (usually of size 64 MB)
» Chunks are replicated (3 times is common)

» Chunk copies are distributed across the nodes

UNIVERSITAT
BIELEFELD

DISTRIBUTED FILE SYSTEMS: SUMMARY

vV v v vy

Data is divided into chunks (usually of size 64 MB)
Chunks are replicated (3 times is common)

Chunk copies are distributed across the nodes

A file called master node keeps track of where chunks went

A client library provides file access; talks to master and connects
to individual servers

UNIVERSITAT

BIELEFELD

DISTRIBUTED FILE SYSTEMS: SUMMARY

vV v v vy

v

Data is divided into chunks (usually of size 64 MB)
Chunks are replicated (3 times is common)

Chunk copies are distributed across the nodes

A file called master node keeps track of where chunks went

A client library provides file access; talks to master and connects
to individual servers

Examples of DFS Implementations:

» Google File System (GFS): the original

» Hadoop Distributed File System (HDFS): open source, used with
Hadoop, a MapReduce implementation

» Colossus: supposed to be an improvement over GFS; little has been
published

UNIVERSITAT

BIELEFELD

DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

“hunk server 2 Chunk server 3 Chunk server N

~

Chunk server 1

Adopted from mmds . org

» Chunk servers correspond to nodes in racks

UNIVERSITAT
BIELEFELD

DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Chunk server 1 Chunk server 2 “hunk server 3 Chunk server N

~

Adopted from mmds . org

» One file (“File C”) in 6 chunks, C0, C1, C2, C3, C4, C5

UNIVERSITAT
BIELEFELD

u]
]
I
w
i

Chunk server 1

Chunk server 2

Chunk server 3

Adopted from mmds . org

DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Chunk server N

» Replicating each chunk twice and putting copies to different
nodes prevents damage due to failure

UNIVERSITAT
BIELEFELD

DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Chunk server 1 Chunk server 2 Chunk server 3 Chunk server N
Adopted from mmds . org

» Fill servers up; computations are carried out immediately by
chunk servers

UNIVERSITAT
BIELEFELD

Map Reduce: Workflow

UNIVERSITAT
BIELEFELD

MAPREDUCE: WORKFLOW

1. Chunks are assigned to Map tasks, which turn each chunk into
sequence of key-value pairs. [4% 9Dy e (R JrL):l

» Key-value pair generation is specified by user

UNIVERSITAT
BIELEFELD

MAPREDUCE: WORKFLOW

1. Chunks are assigned to Map tasks, which turn each chunk into
sequence of key-value pairs.

» Key-value pair generation is specified by user

2. Master controller (automatic):

> Key-value pairs are collected
» Key-value pairs are sorted
» Keys are divided among Reduce tasks

UNIVERSITAT
BIELEFELD

MAPREDUCE: WORKFLOW

1. Chunks are assigned to Map tasks, which turn each chunk into
sequence of key-value pairs.

» Key-value pair generation is specified by user
2. Master controller (automatic):

> Key-value pairs are collected
» Key-value pairs are sorted
» Keys are divided among Reduce tasks

3. Reduce tasks combine values into final output

» Reduce tasks are specified by user
» Reduce tasks work on one key at a time

UNIVERSITAT
BIELEFELD

MAPREDUCE: RUNNING EXAMPLE

» Input: One, or several huge documents

» Desired Output: Counts of all words appearing in the documents

UNIVERSITAT
BIELEFELD

MAPREDUCE: RUNNING EXAMPLE

» Input: One, or several huge documents
» Desired Output: Counts of all words appearing in the documents

» Applications:

» Detecting plagiarism
» Determining words characterizing documents for web searches

UNIVERSITAT
BIELEFELD

MAPREDUCE: RUNNING EXAMPLE

» Input: One, or several huge documents
» Desired Output: Counts of all words appearing in the documents

» Applications:

» Detecting plagiarism
» Determining words characterizing documents for web searches

» Important: In the example, distinguish between

» Input key-value pairs that reflect id-file pairs

» Intermediate key-value pairs that reflect key-value pairs from
Map tasks, as seen in the slide before

» The latter ones are important for MapReduce

UNIVERSITAT
BIELEFELD

MAPREDUCE: MAP

Input

key-value pairs

Y]
4 [

Al v

Here, input key-value pairs refer to id-file (id-document) pairs
UNIVERSITAT
BIELEFELD

Adopted from mmds . org

UNIVERSITAT
BIELEFELD

MAPREDUCE: MAP

Input

Intermediate
key-value pairs

key-value pairs

Al]

Intermediate key-value pairs are the ones to be generated by a Map task

Adopted from mmds . org

MAPREDUCE: MAP

Input

Intermediate
key-value pairs

key-value pairs 2
R 2
A = @ FY
AN 2 5y
y {8 O7 4

Here: intermediate key-value pairs correspond to <’word’,1> tuples
UNIVERSITAT

Adopted from mmds . org
BIELEFELD

RN Ge

MAPREDUCE: REDUCE

Intermediate
key-value pairs

N d 4
d 4
4

7 4

Intermediate key-value pairs (<’word’,1> tuples) generated by Map

Adopted from mmds . org
UNIVERSITAT
BIELEFELD

u]

]
l

ul
it

RN Ge

MAPREDUCE: REDUCE

Intermediate
key-value palrs

OLT &M
o emy 7
oM

& (‘&ppﬂq([/(5

@! oS

Intermediate key-value pairs generated by Map

Capylt!, ‘i(ey-value groups

Adopted from mmds . org
UNIVERSITAT
BIELEFELD

u]
]
l
ul
it

RN Ge

MAPREDUCE: REDUCE

Intermediate

key-value pairs

Clapph! (g 4D — Coptd 3

(
Output
Key-value groups key-value pairs
&L L= e®
Group
\ & AR JU

reduce ‘ .

UNIVERSITAT

Output key-value pairs generated by Reduce: here <’word’,count> tuples
BIELEFELD

Adopted from mmds . org

RN Ge

MAPREDUCE: FORMAL SUMMARY

» Input: A set of (key, value)-pairs < k,v >

» < k,v > usually correspond to file (v) and id (k) of the file

UNIVERSITAT
BIELEFELD

MAPREDUCE: FORMAL SUMMARY

» Input: A set of (key, value)-pairs < k,v >
» < k,v > usually correspond to file (v) and id (k) of the file

» o be provided by programmer:

UNIVERSITAT
BIELEFELD

MAPREDUCE: FORMAL SUMMARY

» Input: A set of (key, value)-pairs < k,v >
» < k,v > usually correspond to file (v) and id (k) of the file

» o be provided by programmer:

> Map(< k,o>) =< k', v/ >*
» Maps input pair < k,v > to multi-set of key-value pairs < k', v’ >
» < K,v" >isintermediate key-value in schematic on slides before

UNIVERSITAT
BIELEFELD

MAPREDUCE: FORMAL SUMMARY

» Input: A set of (key, value)-pairs < k,v >
» < k,v > usually correspond to file (v) and id (k) of the file

» o be provided by programmer:

> Map(< k,o>) =< k', v/ >*
» Maps input pair < k,v > to multi-set of key-value pairs < k', v’ >
» < K,v" >isintermediate key-value in schematic on slides before
» One Map call for each input key-value pair < k,v >

UNIVERSITAT
BIELEFELD

MAPREDUCE: FORMAL SUMMARY

» Input: A set of (key, value)-pairs < k,v >
» < k,v > usually correspond to file (v) and id (k) of the file

» o be provided by programmer:

> Map(< k,o>) =< k', v/ >*
» Maps input pair < k,v > to multi-set of key-value pairs < k', v’ >
» < K,v" >isintermediate key-value in schematic on slides before
» One Map call for each input key-value pair < k,v >

» Reduce(< k', v" >*) =< K 0" >*
> For each key k’ all key-value pairs < k’,v’ > are reduced together

UNIVERSITAT
BIELEFELD

MAPREDUCE: FORMAL SUMMARY

» Input: A set of (key, value)-pairs < k,v >
» < k,v > usually correspond to file (v) and id (k) of the file

» o be provided by programmer:

> Map(< k,o>) =< k', v/ >*
» Maps input pair < k,v > to multi-set of key-value pairs < k', v’ >
» < K,v" >isintermediate key-value in schematic on slides before
» One Map call for each input key-value pair < k,v >

» Reduce(< k', v" >*) =< K 0" >*
> For each key k’ all key-value pairs < k’,v’ > are reduced together
» One Reduce call for each unique key k’

UNIVERSITAT
BIELEFELD

MAPREDUCE EXAMPLE: WORD COUNTING

The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers
of a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step
in a long-term space-based
man/mache partnership.
"The work we're doing now
- the robotics we're doing
- is what we're going to
need

Big document

Intermediate key-value pairs correspond to <’word’,1> tuples

UNIVERSITAT
BIELEFELD

Provided by the

programmer

MAP:
Read input and
produces a set of
key-value pairs

(The, 1)
(crew, 1)

(of, 1)
(the, 1)
(space, 1)
(shuttle, 1)
(Endeavor, 1)
(recently, 1)

(key, value)

Adopted from mmds . org

RN Ge

MAPREDUCE EXAMPLE: WORD COUNTING

Provided by the
programmer

MAP:
Read input and
produces a set of
key-value pairs

Group by
key:
Collect all pairs
with same key

Thi
AR AI (e 1) (crew 1)
returned to Earth as (crew, 1) (crew, 1)

(of, 1) (space, 1)

Sptraton. St a

m n"wing fots ot (the, 1) (the, 1)
recent assembly of the (space, 1) (the, 1)
233:"?;;"&;‘:;5 (shuttle, 1) (the, 1)
%’V’&Z‘J‘&.f:ﬂ:;’.’l&"; (Endeavor, 1) (shuttle, 1)
~ the robotics wee doing (recently, 1)

- is what we'e going to (recently, 1)
need wee

Big document (key, value) (key, value)

Intermediate key-value pairs are sorted and hashed by key (automatic)
Adopted from mmds . org

UNIVERSITAT
BIELEFELD

RN Ge

MAPREDUCE EXAMPLE: WORD COUNTING

Provided by the Provided by the
programmer programmer

MAP: Group by Reduce:
Read input and key: Collect all values
produces a set of Collect all pairs belonging to the
key-value pairs with same key key and output

I;"';“:"E':“:’w:"m‘g‘n: (The, 1) (crew, 1)

returned to Earth as (crew, 1) (crew, 1)

;nbassadors, n:fmmm (of, 1) (space 1) (crew, 2)
cxploration, Scinist. at (the, 1) (th '1) (space, 1)
NASA are saying that the e, 2 (the, 3)
recent assembly of the (space, 1) (the, 1) (&t tt’l‘ 1
:’m,,;?.’,‘;.m st ’m (shuttle, 1) (the, 1) S 1_” e:
m’m‘;‘ﬁmg’m (Endeavor, 1) (shuttle, 1) (recently, 1)
~ the robotics were doing (recently, 1) (recently, 1)

- is what we're going to
need

Big document (key, value) ﬂ value) (key, value)

+ gerorohiy (Crew 01,905

Reduce sums up a]l values for each key
Adopted from mmds . org

UNIVERSITAT
BIELEFELD

u]
]
l
ul
it

RN Ge

Provided by the

programmer

MAP:
Read input and
produces a set of
key-value pairs

Group by
key:
Collect all pairs
with same key

MAPREDUCE EXAMPLE: WORD COUNTING

Provided by the

programmer

Reduce:
Collect all values
belonging to the
key and output

The oo of e sace (The, 1) (crew, 1)

returned to Earth as (crew, 1) (crew, 1) (crew, 2)
of a 'r:)w“ usz:iofﬂ st:nca (of, 1) (space, 1) (space 1)
.N)x'é: are 'nmth!m 1:: (the’ D) (the' 1)

(the, 3)
(shuttle, 1)
(recently, 1)

(space, 1) (the, 1)
(shuttle, 1) (the, 1)

Dexre bot is the first step
in a long-term space-based
"The work we're doing now
- the robotics we're doing
- is what we're going to
need

(Endeavor, 1)
(recently, 1)

(shuttle, 1)
(recently, 1)

Big document (key, value) (key, value) (key, value)

Map tasks are parallelized across nodes: one Map per chunk
Adopted from mmds . org

UNIVERSITAT
BIELEFELD

RN Ge

MAPREDUCE EXAMPLE: WORD COUNTING

The crew of the space
shuttle Endeavor recently
returned to Earth as

of a new era of space
exploration. Scientists at
NASA are_saying that the

Dexre bot is the first step
in a long-term spaeo«baspd

"The work we're doing now
- the robotics we're doing
~ is what we're going to

Reduce tasks are parallelized across nodes: one Reduce for a subset of keys

UNIVERSITAT
BIELEFELD

Big document

Provided by the
programmer
MAP:
Read input and

produces a set of
key-value pairs

(The, 1)
(crew, 1)

(ot, 1)
(the, 1)
(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

(key, value)

Adopted from mmds . org

Group by
key:
Collect all pairs
with same key

(crew, 1)
(crew, 1)
(space, 1)
(the, 1)
(the, 1)
(the, 1)
(shuttle, 1)
(recently, 1)

(key, value)

Provided by the
programmer

Reduce:
Collect all values
belonging to the
key and output

(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)

(key, value)

RN Ge

EXAMPLE: WORD COUNTING CODE

map (key, wvalue)
// key: document name, value: text of document
foreach word w in value:
emit (w, 1)

reduce (key, values)

// key: a word, values: an iterator over counts
result = 0
foreach count v in values:
result += v
emit (key, result)

UNIVERSITAT
BIELEFELD

MAPREDUCE: WORKFLOW SUMMARY

Keys with all
Key—value their values
pairs (v, w...])

chunks

Combined
output

tasks by keys

Reduce
tasks

Summary
Here < k,v > refers to intermediate key-value pair earlier

Upon sorting key-value pairs are hashed

UNIVERSITAT Adopted from mmds . org
BIELEFELD

Map Reduce: Execution

UNIVERSITAT
BIELEFELD

MAPREDUCE: HOST S1ZE EXAMPLE

» Input: Large web corpus with metadata file
» Metadata file has entries: (URL, size, date,...)

» Would like to determine size for each host, which may
encompass several URL’s

UNIVERSITAT
BIELEFELD

MAPREDUCE: HOST S1ZE EXAMPLE

» Input: Large web corpus with metadata file
» Metadata file has entries: (URL, size, date,...)

» Would like to determine size for each host, which may
encompass several URL’s

» Map: For each entry, key-value pair: < host(URL), size >

UNIVERSITAT
BIELEFELD

MAPREDUCE: HOST S1ZE EXAMPLE

» Input: Large web corpus with metadata file
» Metadata file has entries: (URL, size, date,...)

» Would like to determine size for each host, which may
encompass several URL’s

» Map: For each entry, key-value pair: < host(URL), size >
» Reduce: Add up sizes for each host

UNIVERSITAT
BIELEFELD

MAPREDUCE: LANGUAGE EXAMPLE

» Input: Many (possibly large) documents

» Goal: Count all 5-word sequences

UNIVERSITAT
BIELEFELD

MAPREDUCE: LANGUAGE EXAMPLE

» Input: Many (possibly large) documents

» Goal: Count all 5-word sequences

» Map: Extract < 5 — word — sequence,1 > as key-value pairs

UNIVERSITAT
BIELEFELD

MAPREDUCE: LANGUAGE EXAMPLE

» Input: Many (possibly large) documents

» Goal: Count all 5-word sequences

» Map: Extract < 5 — word — sequence,1 > as key-value pairs

» Reduce: Add up counts across 5-word-sequence keys: several such
keys per document

UNIVERSITAT
BIELEFELD

MAPREDUCE: LANGUAGE EXAMPLE II

» Input: Many (possibly large) documents

» Goal: Count all 5-word sequences

UNIVERSITAT
BIELEFELD

MAPREDUCE: LANGUAGE EXAMPLE II

» Input: Many (possibly large) documents

» Goal: Count all 5-word sequences

» Alternative Map: Extract < 5 — word — sequence, count > from each
document, where count refers to number of appearances of
5-word-sequence in one document)

UNIVERSITAT
BIELEFELD

MAPREDUCE: LANGUAGE EXAMPLE II

» Input: Many (possibly large) documents

» Goal: Count all 5-word sequences

» Alternative Map: Extract < 5 — word — sequence, count > from each
document, where count refers to number of appearances of
5-word-sequence in one document)

» Alternative Reduce: Add up counts across 5-word-sequence keys:
one key per document

UNIVERSITAT
BIELEFELD

MAPREDUCE: COMBINERS

» The "Alternative Map’ is a strategy when Reduce tasks are
associative

» In that case, some of the Reduce work can already done in the
Map step

UNIVERSITAT
BIELEFELD

MAPREDUCE: COMBINERS

» The "Alternative Map’ is a strategy when Reduce tasks are
associative

» In that case, some of the Reduce work can already done in the
Map step

» Adding is associative and commutative:
(@a4+b)+c=a+b+c)
a+b=b+a

» So, the Map task can generate < key, count > per document
instead of just count times many < key,1 > key-value pairs

UNIVERSITAT
BIELEFELD

MAPREDUCE: COMBINERS

» The "Alternative Map’ is a strategy when Reduce tasks are
associative

» In that case, some of the Reduce work can already done in the
Map step

» Adding is associative and commutative:
(@a4+b)+c=a+b+c)
a+b=b+a

» So, the Map task can generate < key, count > per document
instead of just count times many < key,1 > key-value pairs

» Skew: Runtime needed by Reduce tasks can vary substantially

UNIVERSITAT
BIELEFELD

MAPREDUCE: COMBINERS

» The "Alternative Map’ is a strategy when Reduce tasks are
associative

» In that case, some of the Reduce work can already done in the
Map step

» Adding is associative and commutative:

(@a4+b)+c=a+b+c)
a+b=b+a

» So, the Map task can generate < key, count > per document
instead of just count times many < key,1 > key-value pairs

» Skew: Runtime needed by Reduce tasks can vary substantially

» Random assignment of keys to Reduce tasks balances out skew
» Using more Reduce tasks than nodes leads to balanced work load
per node

UNIVERSITAT
BIELEFELD

MAPREDUCE: EXECUTION

User
> Program
N

’ fork \\

,
fork v, fork
, .
G
, N
, > < \
’ e N \
// e AN \
, 7 assign NN N
4 assign > N
.
\

Map Reduce "~

Output
Intermediate File
Files
Execution of MapReduce program: overview
Adopted from mmds . org
=} =

UNIVERSITAT
BIELEFELD

MAPREDUCE: EXECUTION

» User needs to choose number of Map and Reduce tasks

» One Map task per data chunk (so many more than nodes)
» Less Reduce tasks: keep number of intermediate files low
» One Master node

UNIVERSITAT
BIELEFELD

MAPREDUCE: EXECUTION

» User needs to choose number of Map and Reduce tasks

» One Map task per data chunk (so many more than nodes)
» Less Reduce tasks: keep number of intermediate files low
» One Master node

» Master keeps track of status of tasks (idle, in process, completed)

UNIVERSITAT
BIELEFELD

MAPREDUCE: EXECUTION

» User needs to choose number of Map and Reduce tasks

» One Map task per data chunk (so many more than nodes)
» Less Reduce tasks: keep number of intermediate files low
» One Master node

» Master keeps track of status of tasks (idle, in process, completed)

» Worker process reports to Master when finished; gets assigned a
new task

UNIVERSITAT
BIELEFELD

MAPREDUCE: EXECUTION

» User needs to choose number of Map and Reduce tasks

» One Map task per data chunk (so many more than nodes)
» Less Reduce tasks: keep number of intermediate files low
» One Master node

» Master keeps track of status of tasks (idle, in process, completed)

» Worker process reports to Master when finished; gets assigned a
new task

» Master keeps track of location and sizes of files

UNIVERSITAT
BIELEFELD

MAPREDUCE: EXECUTION

» User needs to choose number of Map and Reduce tasks

» One Map task per data chunk (so many more than nodes)
» Less Reduce tasks: keep number of intermediate files low
» One Master node

» Master keeps track of status of tasks (idle, in process, completed)

» Worker process reports to Master when finished; gets assigned a
new task

» Master keeps track of location and sizes of files

» Node Failures:

» When Worker nodes fail, Master reassigns tasks to other nodes
» When Master node fails, entire process needs to be restarted

UNIVERSITAT
BIELEFELD

Map Reduce: Algorithms

UNIVERSITAT
BIELEFELD

MAPREDUCE: ALGORITHMS

» MapReduce does not necessarily cater to every problem that
profits from parallelization

» Example: Online retail sales: searches for products, recording sales
» Require little computation, but modify underlying databases

UNIVERSITAT
BIELEFELD

MAPREDUCE: ALGORITHMS

» MapReduce does not necessarily cater to every problem that
profits from parallelization

» Example: Online retail sales: searches for products, recording sales
» Require little computation, but modify underlying databases

» Original Purpose: Multiplying matrices required for PageRank
(Google)

» Matrix-vector multiplication
» Matrix-matrix multiplication

UNIVERSITAT
BIELEFELD

MAPREDUCE: ALGORITHMS

» MapReduce does not necessarily cater to every problem that
profits from parallelization

» Example: Online retail sales: searches for products, recording sales
» Require little computation, but modify underlying databases

» Original Purpose: Multiplying matrices required for PageRank
(Google)

» Matrix-vector multiplication
» Matrix-matrix multiplication

» Databases: Relational algebra operations

» Selection, projection
» Union, intersection, difference
» Natural join

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION I

Let M = (m;;) € R™*", v = (vy,...,v,) € R", for (very) large m, n.
We would like to compute Mv =: x = (x1, ..., X;,) € R"

n

S
X = Z mijU]' <’V“ Aq T m 4"\)(,,(1)]
=1 :

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION I

Let M = (m;;) € R™*", v = (vy,...,v,) € R", for (very) large m, n.
We would like to compute Mv =: x = (x1, ..., X;,) € R"

n
Xi = Z mijv; 1
j=1

Assumptions:

» M, v stored as files in DFS

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION I

Let M = (m;;) € R™*", v = (vy,...,v,) € R", for (very) large m, n.
We would like to compute Mv =: x = (x1, ..., X;,) € R"

n
Xi = Z mijv; 1
j=1

Assumptions:

» M, v stored as files in DFS

» coordinates i,] of entries m;; discoverable (e.g. possible through
explicit storage (i, , m;;))

» coordinates j of entries v; discoverable

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION II
We would like to compute Mv = x = (xq, ..., x,) € R"
Xi = Z mijv; 2)
j=1

Map

1. Take in suitably sized chunk of M and (entire) v J7 hond,

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION II
We would like to compute Mv = x = (xq, ..., x,) € R"
Xi = Z mijv; 2)
j=1

Map

1. Take in suitably sized chunk of M and (entire) v

2. Generate key-value pairs (i, m;v;)

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION II

We would like to compute Mv = x = (xq, ..., x,) € R"
n
Xi = Z m;jv; (2)
=1

Map

1. Take in suitably sized chunk of M and (entire) v

2. Generate key-value pairs (i, m;v;)

Reduce

1. Sum all values of pairs with key i, yielding x;

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION III

We would like to compute Mv =: x = (x1, ..., X)) € R"

X = Z m;jv; 3)
=1

Situation: Vector v too large to fit in main memory

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION III

We would like to compute Mv =: x = (x1, ..., X)) € R"

X = Z m;jv; 3)
=1

Situation: Vector v too large to fit in main memory
Solution: Cut both M and v into stripes, process (chunks of) stripes

Matrix M Vector v

Adopted from mmds . org

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION III

Mauix M Vector v

Adopted from mmds . org

Map
» Take in suitably sized chunk of stripe of M and stripe of v

» Generate key-value pairs (i, m;v;)

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-VECTOR MULTIPLICATION III

Mauix M Vector v

Adopted from mmds . org

Map
» Take in suitably sized chunk of stripe of M and stripe of v

» Generate key-value pairs (i, m;v;)

Reduce

» Sum all values of pairs with key i, yielding x;
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRAS

MapReduce: Operations on large-scale data in database queries

» Reminder: Relational Model From | To

» A relation is a table with urll | url2
» column headers called attributes urll | url3
» rows called tuples url2 | url3

url2 | url4d

Relation Links (from mmds . org)

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRAS

MapReduce: Operations on large-scale data in database queries

» Reminder: Relational Model From | To

» A relation is a table with urll | url2

» column headers called attributes urll | url3

» rows called tuples url2 | url3

» We write R(A1, Az, ..., Ay) fora url2 | url4d
relation R with attributes cee -
Av Ag, o Ay

Relation Links (from mmds . org)

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

» Selection: Apply condition C and select only tuples (rows) from
R that satisfy C, denoted o¢(R)

» Choose only rows from R that refer to links leaving from or
leading to a particular URL

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

» Selection: Apply condition C and select only tuples (rows) from
R that satisfy C, denoted o¢(R)

» Choose only rows from R that refer to links leaving from or
leading to a particular URL

» Projection: Choose a subset S of columns from R to generate new
table 7s(R)

» Generate table with only URL’s that have incoming links

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

Selection o¢(R)

» Map: For each tuple ¢ in R check whether C applies

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

Selection o¢(R)

» Map: For each tuple ¢ in R check whether C applies
» If yes, generate key-value pair (t, t)

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

Selection o¢(R)

» Map: For each tuple ¢ in R check whether C applies

» If yes, generate key-value pair (t, t)
» If not, do nothing

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

Selection o¢(R)

» Map: For each tuple ¢ in R check whether C applies

» If yes, generate key-value pair (t, t)
» If not, do nothing

» Reduce: Reflects identity function, turns key-value pairs into output

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

Selection o¢(R)

» Map: For each tuple ¢ in R check whether C applies

» If yes, generate key-value pair (t, t)
» If not, do nothing

» Reduce: Reflects identity function, turns key-value pairs into output

Projection 7g(R)

» Map: For each tuple t € R compute tuple #' by removing attributes not
from S. Generate key-value pair (¥, t')

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

Selection o¢(R)

» Map: For each tuple ¢ in R check whether C applies

» If yes, generate key-value pair (t, t)
» If not, do nothing

» Reduce: Reflects identity function, turns key-value pairs into output

Projection 7g(R)

» Map: For each tuple t € R compute tuple #' by removing attributes not
from S. Generate key-value pair (¥, t')

> Reduce: Two different f may turn into identical ¢, so there may be
identical key-value pairs (#, '), the system turns into (¢, [, ..., t']) by
grouping; output just (#',t'), yielding one key-value pair for each '

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

» Union, Intersection, Difference: Set operations applied to sets of
tuples from two relations R and S

» Imagine two tables, for links leaving from URL’s in Europe and
North America

» Intersection: compute set of URL’s that have incoming links from
both Europe and North America

UNIVERSITAT
BIELEFELD

MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

» Union, Intersection, Difference: Set operations applied to sets of
tuples from two relations R and S

» Imagine two tables, for links leaving from URL’s in Europe and
North America

» Intersection: compute set of URL’s that have incoming links from
both Europe and North America

» Natural Join: Generate new table by joining tuples from two
tables R and S when agreeing on attributes shared by two tables,
yielding a new table R >1 S

» Imagine two tables of links, one with links from Europe to Asia
Lea, and one from Asia to North America Lay

» Join two URL pairs when "To” from first table agrees with "From’
from second table

» This yields table Lrs > Lay with three columns

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS

Union, Intersection

» Map: For each tuple t from both R and S generate key-value pair

(1)

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS

Union, Intersection

» Map: For each tuple t from both R and S generate key-value pair
(t:1)

» Reduce: After grouping, there will be two kinds of pairs: either

(£, [t]) or (£, [¢,)

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS

Union, Intersection

» Map: For each tuple t from both R and S generate key-value pair
(t,1)

» Reduce: After grouping, there will be two kinds of pairs: either
(£, [t]) or (& [t])

» For Union, output everything

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS

Union, Intersection

» Map: For each tuple t from both R and S generate key-value pair
(t,1)

» Reduce: After grouping, there will be two kinds of pairs: either
(£, [t]) or (& [t])

» For Union, output everything
» For Intersection, output (f,t) only for (¢, [t,])

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS

Union, Intersection

» Map: For each tuple t from both R and S generate key-value pair
(t,1)

» Reduce: After grouping, there will be two kinds of pairs: either
(£, [t]) or (& [t])

» For Union, output everything
» For Intersection, output (f,t) only for (¢, [t,])

Difference

» Map: For a tuple t in R, generate key-value pair (¢, R), and for
tuple f in S generate key-value pair (¢, S) (use single bits for
distinguishing R, S)

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS

Union, Intersection

» Map: For each tuple t from both R and S generate key-value pair
(t,1)

» Reduce: After grouping, there will be two kinds of pairs: either
(£, [t]) or (& [t])

» For Union, output everything
» For Intersection, output (f,t) only for (¢, [t,])

Difference

» Map: For a tuple t in R, generate key-value pair (¢, R), and for
tuple f in S generate key-value pair (¢, S) (use single bits for
distinguishing R, S)

» Reduce: After grouping, three cases: (f, [R]), (£, [R,S]), (t,[S]).
Output (¢, t) only for (t, [R])

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS
Natural Join: R(A, B) 1 S(B, C)

» Map: For each tuple t = (a,b) from R, generate key-value pair
(b, (R,a)). For each tuple (b,c) from S, generate (b, (S, c)).

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS
Natural Join: R(A, B) 1 S(B, C)

» Map: For each tuple t = (a,b) from R, generate key-value pair
(b, (R,a)). For each tuple (b,c) from S, generate (b, (S, c)).

» Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS
Natural Join: R(A, B) 1 S(B, C)
» Map: For each tuple t = (a,b) from R, generate key-value pair
(b, (R,a)). For each tuple (b,c) from S, generate (b, (S, c)).

» Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

» Construct all pairs of values where first component is like (R, a)
and second component is like (S, ¢), yielding triples

(b, (R,a), (S, ¢))

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS
Natural Join: R(A, B) 1 S(B, C)

» Map: For each tuple t = (a,b) from R, generate key-value pair
(b, (R,a)). For each tuple (b,c) from S, generate (b, (S, c)).

» Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

» Construct all pairs of values where first component is like (R, a)
and second component is like (S, ¢), yielding triples

(b7 (R7 u)7 (57 C))
» Turn triples into triples (a, b, c) being output

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS
Natural Join: R(A, B) 1 S(B, C)
» Map: For each tuple t = (a,b) from R, generate key-value pair
(b, (R,a)). For each tuple (b,c) from S, generate (b, (S, c)).

» Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

» Construct all pairs of values where first component is like (R, a)
and second component is like (S, ¢), yielding triples

(b’ (R7 u)7 (57 C))
» Turn triples into triples (a, b, c) being output

General Natural Join
Do like for relations with two attributes, by considering

» A attributes from Rnotin S

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS
Natural Join: R(A, B) 1 S(B, C)
» Map: For each tuple t = (a,b) from R, generate key-value pair
(b, (R,a)). For each tuple (b,c) from S, generate (b, (S, c)).

» Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

» Construct all pairs of values where first component is like (R, a)
and second component is like (S, ¢), yielding triples

(b’ (R7 u)7 (57 C))
» Turn triples into triples (a, b, c) being output

General Natural Join
Do like for relations with two attributes, by considering

» A attributes from R not in S
» B attributes bothin R, S

UNIVERSITAT
BIELEFELD

RELATIONAL ALGEBRA OPERATIONS
Natural Join: R(A, B) 1 S(B, C)
» Map: For each tuple t = (a,b) from R, generate key-value pair
(b, (R,a)). For each tuple (b,c) from S, generate (b, (S, c)).

» Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

» Construct all pairs of values where first component is like (R, a)
and second component is like (S, ¢), yielding triples

(b’ (R7 u)7 (57 C))
» Turn triples into triples (a, b, c) being output

General Natural Join
Do like for relations with two attributes, by considering

» A attributes from R not in S
» B attributes bothin R, S

unve®iiC attributes from S not in R
BIELEFELD

MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (m;;) € R"™*" N = (n;) € R™<k for (very) large m, n, k.
We would like to compute MN € R™*k where (MN); = Z}Ll miinj

» Map:

» For each m;;, generate all possible key-value pairs ((i, 1), (M, j, m;;)

UNIVERSITAT

BIELEFELD

MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (m;;) € R"™*" N = (n;) € R™<k for (very) large m, n, k.
We would like to compute MN € R™*k where (MN); = Z}Ll miinj
» Map:

» For each m;;, generate all possible key-value pairs ((i, 1), (M, j, m;;)
» For each n;, generate all possible key-value pairs ((i,1), (N, j, n)

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (m;;) € R"™*" N = (n;) € R™<k for (very) large m, n, k.
We would like to compute MN € R™*k where (MN); = Z}Ll miinj
» Map:

» For each m;;, generate all possible key-value pairs ((i, 1), (M, j, m;;)
» For each n;, generate all possible key-value pairs ((i,1), (N, j, n)
» Thereby, M and N are stored by means of single bit

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (m;;) € R"™*" N = (n;) € R™<k for (very) large m, n, k.
We would like to compute MN € R™*k where (MN); = Z}Ll miinj
» Map:

» For each m;;, generate all possible key-value pairs ((i, 1), (M, j, m;;)
» For each n;, generate all possible key-value pairs ((i,1), (N, j, n)
» Thereby, M and N are stored by means of single bit

» Reduce: Need to work on list of values of keys (i,):

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (m;;) € R"™*" N = (n;) € R™<k for (very) large m, n, k.
We would like to compute MN € R™*k where (MN); = Z}Ll miinj
» Map:

» For each m;;, generate all possible key-value pairs ((i, 1), (M, j, m;;)
» For each n;, generate all possible key-value pairs ((i,1), (N, j, n)
» Thereby, M and N are stored by means of single bit

» Reduce: Need to work on list of values of keys (i,):

» Sort values [which are either (M, j, m;;) or (N,j,n;)] by j

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (m;;) € R"™*" N = (n;) € R™<k for (very) large m, n, k.
We would like to compute MN € R™*k where (MN); = Z}Ll miinj
» Map:

» For each m;;, generate all possible key-value pairs ((i, 1), (M, j, m;;)
» For each n;, generate all possible key-value pairs ((i,1), (N, j, n)
» Thereby, M and N are stored by means of single bit

» Reduce: Need to work on list of values of keys (i,):

» Sort values [which are either (M, j, m;;) or (N,j,n;)] by j
> After sorting, multiply each of two consecutive values m;;, nj

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (m;;) € R"™*" N = (n;) € R™<k for (very) large m, n, k.
We would like to compute MN € R™*k where (MN); = Z}Ll miinj
» Map:

» For each m;;, generate all possible key-value pairs ((i, 1), (M, j, m;;)
» For each n;, generate all possible key-value pairs ((i,1), (N, j, n)
» Thereby, M and N are stored by means of single bit

» Reduce: Need to work on list of values of keys (i,):

» Sort values [which are either (M, j, m;;) or (N,j,n;)] by j
> After sorting, multiply each of two consecutive values m;;, nj
» Add up all the products

UNIVERSITAT
BIELEFELD

MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (m;;) € R"™*" N = (n;) € R™<k for (very) large m, n, k.
We would like to compute MN € R™*k where (MN); = Z}Ll miinj
» Map:

» For each m;;, generate all possible key-value pairs ((i, 1), (M, j, m;;)
» For each n;, generate all possible key-value pairs ((i,1), (N, j, n)
» Thereby, M and N are stored by means of single bit

» Reduce: Need to work on list of values of keys (i,):

» Sort values [which are either (M, j, m;;) or (N,j,n;)] by j
> After sorting, multiply each of two consecutive values m;;, nj
» Add up all the products

Remark: There are more efficient ways to multiply matrices using
Natural Join (2.3.9)

UNIVERSITAT
BIELEFELD

MATERIALS / OUTLOOK

» See Mining of Massive Datasets, chapter 2.1-2.3

» Asusual, see http://www.mmds.org/ in general for further
resources

» Next lecture: “Map Reduce / Workflow Systems I1”
» See Mining of Massive Datasets 2.4-2.6

UNIVERSITAT
BIELEFELD

