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SUMMARY OF CURRENT STATUS

From mmds.org

I Shingling: turning text files into sets + Done!

I Minhashing: computing similarity for large sets + Done!

I Locality Sensitive Hashing: avoids O(N2) comparisons by
determining candidate pairs + today!



CURRENT STATUS: ISSUES STILL REMAINING

I Minhashing enabled to compute similarity between two sets
very fast

I Shingling enabled to turn documents into sets such that
minhashing could be applied

I But if number of items N is too large, O(N2) similarity
computations are infeasible, even using minhashing

I Idea: Browse through items and determine candidate pairs:
I Number of candidate pairs is much smaller than O(N2)
I One performs minhashing only for candidate pairs
I Candidate pairs can be determined with a very fast procedure

I Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)
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LEARNING GOALS TODAY

I Understand the technique of Locality Sensitive Hashing (LSH)

I Understand the theory supporting it



Locality Sensitive Hashing



LOCALITY SENSITIVE HASHING: IDEA

Signature matrix SIG for two permutations (hash
functions) h1, h2, and four sets S1, S2, S3, S4

I Here: m = 5, n = 2
I Originally: each set is from {0, 1}m (a

bitvector of length m)
I Now: each set is from {0, ...,m � 1}n

I Much reduced representation,
because n << m

Idea:
I Hash items (columns in SIG) several

times (b times)
I Candidate pair: pair of columns

hashed to the same bucket, by any of
the hash functions

I Runtime: Hashing all columns is
O(N), examining buckets requires
little time

Motivation:
I False Positive: dissimilar pair hashing

to the same bucket
I False Negative: similar pair never

hashing to the same bucket
I Motivation: limit both false positives

and negatives

⇒ n • login < m

⇒ mm < 2
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LOCALITY SENSITIVE HASHING: BANDING
TECHNIQUE

Signature matrix divided into b = 4 bands of r = 3 rows each

I Divide rows of signature matrix into b bands of r rows each
I For each band, a hash function hashes r integers to buckets
I Number of buckets is large to avoid collisions
I Candidate pair: a pair of columns hashed to the same bucket, in any band
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BANDING TECHNIQUE: EXAMPLE

Signature matrix divided into b = 4 bands of r = 3 rows each

I The columns showing [0, 2, 1] in band 1 are declared a candidate pair

I Other pairs of columns shown are not declared candidate pairs as per the hash
function of the first band

I apart from collisions occurring + which was designed to happen very
rarely

I Pairs of columns may be hashed to the same bucket in another band, so may be
declared candidate pairs
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BANDING TECHNIQUE: THEOREM

Let SIG be a signature matrix grouped into

I b bands of

I r rows each

and consider

I a pair of columns of Jaccard similarity s

THEOREM [LSH CANDIDATE PAIR]:
The probability that the pair of columns becomes a candidate pair is

1 � (1 � sr)b (1)



BANDING TECHNIQUE: PROOF OF THEOREM

PROOF.
Consider a pair of columns whose sets have Jaccard similarity s.

I Given any row, by Theorem “Minhash and Jaccard Similarity” of
last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the
probability to

I agree in all rows of one band is sr,

I disagree in at least one of the rows in a band 1 � sr

I disagree in at least one row in each band is (1 � sr)b

I agree in all rows for at least one band is 1 � (1 � sr)b
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BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]
For given b and r, the S-curve is defined by the prescription

s 7! 1 � (1 � sr)b (2)
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BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]
For given b and r, the S-curve is defined by the prescription

s 7! 1 � (1 � sr)b (3)

Table: Values for S-curve with b = 20 and r = 5



FINDING SIMILAR DOCUMENTS: OVERALL
WORKFLOW

From mmds.org

I Shingling: Done!
I Minhashing: Done!
I Locality-Sensitive Hashing: Done!



LOCALITY SENSITIVE HASHING: GUIDELINES

I One needs to determine b, r

I One needs to determine threshold t:
I s � t: candidate pair
I s < t: no candidate pair

I bands times rows is number of rows of signature matrix +
br = n

I t corresponds with point of steepest rise on S-curve:
approximately (1/b)(1/r)
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FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:
I Pick k and determine k-shingles for each document
I Sort shingles, document is bitvector over universe of shingles

2. Minhashing:
I Pick n hash functions
I Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:
I Pick threshold t, number of bands b and rows r
I Avoiding false negatives: choose t, b, r such that t ⇡ (1/b)1/r is low
I If avoiding false positives, or speed is important, choose t, b, r such that

t ⇡ (1/b)1/r is large
I Determine candidate pairs by applying the banding technique

4. Return to signatures of candidate pairs and determine whether fraction
of components where they agree is at least t
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Distance Measures



DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]
Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x, y to a number such that

1. d(x, y) � 0 [d is non-negative]

2. d(x, y) = 0 implies x = y [only if two objects are identical, the
distance is zero; strictly positive otherwise]

3. d(x, y) = d(y, x) [distance is symmetric]

4. d(x, z)  d(x, y) + d(y, z) [triangle inequality]



DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]
Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x, y to a number such that

1. d(x, y) � 0 [d is non-negative]

2. d(x, y) = 0 implies x = y [only if two objects are identical, the
distance is zero; strictly positive otherwise]

3. d(x, y) = d(y, x) [distance is symmetric]

4. d(x, z)  d(x, y) + d(y, z) [triangle inequality]



DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]
Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x, y to a number such that

1. d(x, y) � 0 [d is non-negative]

2. d(x, y) = 0 implies x = y [only if two objects are identical, the
distance is zero; strictly positive otherwise]

3. d(x, y) = d(y, x) [distance is symmetric]

4. d(x, z)  d(x, y) + d(y, z) [triangle inequality]



DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]
Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x, y to a number such that

1. d(x, y) � 0 [d is non-negative]

2. d(x, y) = 0 implies x = y [only if two objects are identical, the
distance is zero; strictly positive otherwise]

3. d(x, y) = d(y, x) [distance is symmetric]

4. d(x, z)  d(x, y) + d(y, z) [triangle inequality]



DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]
Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x, y to a number such that

1. d(x, y) � 0 [d is non-negative]

2. d(x, y) = 0 implies x = y [only if two objects are identical, the
distance is zero; strictly positive otherwise]

3. d(x, y) = d(y, x) [distance is symmetric]

4. d(x, z)  d(x, y) + d(y, z) [triangle inequality]
.

dcxcy)
°
"

dcx.it)

×
.IE?.z



DISTANCE MEASURES: EXAMPLES

I In an n-dimensional Euclidean space, points are vectors of length n of real
numbers

I The Lr-distance, defined to be

d([x1, ..., xn], [y1, ..., yn]) = (
nX

i=1

|xi � yi|r)1/r (4)

is a distance measure
I A particular example is the Euclidean distance, defined as the

L2-distance

I Cosine: Let ||x||2 =
qPn

i=1 |xi|2 be the L2-norm of a point in Euclidean
space. The cosine similarity for two points [x1, ..., xn], [y1, ..., yn] is defined
to be Pn

i=1 xiyi

||x||2||y||2
(5)

I Measures the angle between two vectors x and y
I Gives rise to distance measure between lines that pass through origin

.
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DISTANCE MEASURES: EXAMPLES

I Let SIM(x, y) be the Jaccard similarity between two sets x, y. The
quantity

1 � SIM(x, y) (6)

can be proven to be a distance measure.

I Edit distance: Objects are strings. The edit distance between two
strings x = x1...xm, y = y1...yn is the smallest number of
insertions and deletions of single characters to be applied to turn
x into y.

I Hamming Distance: For [x1, ..., xn], [y1, ..., yn], the Hamming
distance is the number of positions i 2 [1, ..., n] where xi 6= yi
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EDIT / HAMMING DISTANCE: EXAMPLE

Edit Distance DE:
Consider x = ”abcde”, y = ”acfdeg”. Claim: DE(x, y) = 3.

I For proving DE(x, y)  3, consider edit sequence

1. Delete b
2. Insert f after c
3. Insert g after e

I For DE(x, y) � 3, consider that x contains b, which y does not, which
holds vice versa for f , g. This implies that 3 edit operations are
necessary at least.

Hamming Distance DH:
Consider x = 10101, y = 11110:

DH(x, y) = 3

because disagreeing in 3 positions (of five overall).
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holds vice versa for f , g. This implies that 3 edit operations are
necessary at least.

Hamming Distance DH:
Consider x = 10101, y = 11110:

DH(x, y) = 3

because disagreeing in 3 positions (of five overall).
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Locality Sensitive Functions



LOCALITY SENSITIVE FAMILY OF FUNCTIONS:
DEFINITION

I Consider functions f that hash items. The notation f (x) = f (y) means
that x and y form a candidate pair.

I A collection F of functions f of this form is called a family of functions
I Unless stated otherwise, d(x, y) = 1 � SIM(x, y) is the Jaccard distance

DEFINITION: [LOCALITY SENSITIVE (LS) FAMILY OF FUNCTIONS]
A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for each f 2 F :

1. d(x, y)  d1 implies that the probability that f (x) = f (y) is at least p1

2. d(x, y) � d2 implies that the probability that f (x) = f (y) is at most p2
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LS FAMILY OF FUNCTION: ILLUSTRATION

Behaviour of any member of a (d1, d2, p1, p2)-sensitive family of function
From mmds.org



LS FAMILY OF FUNCTIONS: EXAMPLE

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic
matrix to the minimum value the rows, in which there are 1’s in the
column, get hashed to.

EXAMPLE: LS FAMILY OF MINHASH FUNCTIONS

I Consider d(x, y) = 1 � SIM(x, y) to measure the distance
between two sets x, y.

I Then it holds that the family of minhash functions is a
(d1, d2, 1 � d1, 1 � d2)-sensitive family for any 0  d1 < d2  1.

PROOF: By definition, d(x, y)  d1 implies
SIM(x, y) = 1 � d(x, y) � 1 � d1. If, on the other hand, d(x, y) � d2, we
obtain SIM(x, y) = 1 � d(x, y)  1 � d2
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
AND-CONSTRUCTION

Consider a (d1, d2, p1, p2)-sensitive family F . We construct a new
family Fr,AND by the following principle:

I Each single member of f 2 Fr,AND is based on r members f1, ..., fr
of F .

I
f (x) = f (y) , fi(x) = fi(y) for all i = 1, ..., r (7)

Example: Consider the members of one band of size r when applying
the banding technique.
Fact: It is easy to show (consider yourself!) that Fr,AND is a
(d1, d2, (p1)r, (p2)r)-sensitive family of functions
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
OR-CONSTRUCTION

Consider a (d1, d2, p1, p2)-sensitive family F . We construct a new
family Fb,OR by the following principle:

I Each single member of f 2 Fb,OR is based on b members f1, ..., fb
of F .

I
f (x) = f (y) , fi(x) = fi(y) for one i = 1, ..., r (8)

Example: The OR-construction reflects the effect of combining
several bands when applying the banding technique.
Fact: It is easy to show (consider yourself again!) that Fb,OR is a
(d1, d2, 1 � (1 � p1)b, 1 � (1 � p2)b)-sensitive family of functions.
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AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY
SENSITIVE HASHING

Example: Applying the OR-construction to Fr,AND, yielding
(Fr,AND)b,OR reflects applying the banding technique altogether, and
varying p1, p2 reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do.
For example:

I How does behaviour change when varying r and b?
+ S-curve

I What happens when exhanging AND and OR?
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AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY
SENSITIVE HASHING

Original family F is (0.2, 0.6, 0.8, 0.4)-sensitive.

Left: Applying first the AND- and then the OR-construction, reflecting
locality sensitive hashing, yields a (0.2, 0.6, 0.8785, 0.0985)-sensitive family.

Right: Applying first the OR- and then the AND-construction, yields a
(0.2, 0.6, 0.9936, 0.5740)-sensitive family.



LS Families for Other Distance Measures



LS Families for Hamming Distance



LS FAMILIES FOR HAMMING DISTANCE

I Assume we have a d-dimensional vector space V
I Let h(x, y) be the Hamming distance between vectors

x = (x1, ..., xd), y = (y1, ..., yd) 2 V
I Let fi(x) := xi be the entry of x at the i-th position
I So fi(x) = fi(y) if and only if xi = yi

I For randomly chosen x, y, the probability that fi(x) = fi(y) is

d � h(x, y)
d

= 1 � h(x, y)
d

the fraction of positions in which x and y agree
I Thus, the family F of {f1, ..., fd} is

(d1, d2, 1 � d1

d
, 1 � d2

d
)� sensitive

for any d1 < d2
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I The family F of {f1, ..., fd} is (d1, d2, 1 � d1
d , 1 � d2

d )� sensitive for any d1 < d2

DIFFERENCES

I Jaccard distance runs from 0 to 1, Hamming distance from 0 to d:
need to scale with 1/d

I There is an unlimited number of minhash functions, but size of
F is only d

I The limited size of F puts limits to AND/OR constructions
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LS FAMILIES FOR COSINE DISTANCE

Two vectors making an angle ✓

From mmds.org

I Cosine distance for x, y 2 V corresponds with the angle ✓(x, y) 2 [0, 180]
between them

I Whatever the dimension d = dimV, two vectors x, y span a plane
V(x, y) (so dimV(x, y) = 2)

I Angle ✓ is measured in that plane V(x, y)
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Any hyperplane (dimension dimV � 1) intersects V(x, y) in a line
I Figure: two hyperplanes, indicated by dotted and dashed line
I Determine hyperplanes U by picking normal vectors v
I That is

U = {u 2 V | hu, vi = 0}
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Consider dashed line hyperplane U: x and y on different sides
I Let v be normal vector of U:

sgnhx, vi 6= sgnhy, vi

so one scalar product is positive and the other one is negative



LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Consider dashed line hyperplane U: x and y on different sides
I Let v be normal vector of U:

sgnhx, vi 6= sgnhy, vi

so one scalar product is positive and the other one is negative



LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Consider dotted line hyperplane U: x and y on the same side
I Let v be normal vector of U:

sgnhx, vi = sgnhy, vi

so both scalar products positive or both negative
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Probability to choose x, y at an angle ✓(x, y) and
I hyperplane like dashed line: ✓(x, y)/180
I hyperplane like dotted line: (180 � ✓(x, y))/180

I Consider hash functions f corresponding to randomly picked normal
vectors vf



LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Consider family F of hash functions f corresponding to randomly
picked hyperplanes, represented by their normal vectors vf

I For x, y 2 V, let

f (x) = f (y) if and only if sgnhvf , xi = sgnhvf , yi

I F is (d1, d2, (180 � d1)/180, (180 � d2)/180)-sensitive

I One can amplify the family as desired
I Apart from rescaling by 180, F is just like minhash family
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SAMPLING RANDOM NORMAL VECTORS: SKETCHES

I When determining normal vectors of random hyperplanes, it
can be shown that it suffices to pick random vectors with entries
either �1 or +1

I Let v1, ..., vn be such random vectors

I For a vector x, the array

[sgnhv1, xi, ..., sgnhvn, xi] 2 [�1,+1]n (9)

is said to be the sketch of x
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SKETCHES: EXAMPLE

I Let x = [3, 4, 5, 6], y = [4, 3, 2, 1]

I Let v1 = [+1,�1,+1,+1], v2 = [�1,+1,�1,+1], v3 =
[+1,+1,�1,�1]

I Then
I Sketch of x is [+1,+1,�1]
I Sketch of y is [+1,�1,+1]
I Sketches of x, y agree in 1 out of 3 positions: we estimate

\✓(x, y) = 120
I However true ✓(x, y) = 38

I There are 16 different vectors with +1,�1 (cardinality of
{�1,+1}4 is 16)

I Computing sketches based on all of them yields estimate
\✓(x, y) = 45
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LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

I Let us consider 2-dimensional space V
I Each member f of family F is associated with line in V
I Line is divided into buckets (segments) of length a
I Points x, y 2 V are “hashed” to buckets
I f (x) = f (y) when hashed to the same segment
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LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

I If Euclidean distance d(x, y)  a/2, then probability to hash x, y to same
segment is at least 1/2

I Distance between x, y after projecting is d(x, y) cos ✓  d(x, y)  a/2
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I If distance between x, y after projecting is greater than a, they will be
hashed to different buckets

I So, if d(x, y) � 2a, we have that d(x, y) cos ✓ > a for ✓ 2 [0, 60]
I It holds that ✓ 2 [0, 60] with probability 2/3 (note: here ✓ 2 [0, 90])
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LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

I In conclusion, the family described has been

(a/2, 2a, 1/2, 1/3)� sensitive

I Family can be amplified as desired
I If families for arbitrary d1 < d2 (and not just d1 = a/2, d2 = 2a), and also

for arbitrary-dimensional vector spaces are desired, special efforts are
required
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MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 3.4–3.7

I See http://www.mmds.org/ for further resources

I Next lecture: “Map Reduce / Workflow Systems I”
I See Mining of Massive Datasets 2.1–2.4


