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SUMMARY OF CURRENT STATUS

Docu-
ment

» Shingling: turning text files into sets = Done!
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From mmds .org

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

» Minhashing: computing similarity for large sets & Done!

» Locality Sensitive Hashing: avoids O(N?) comparisons by
determining candidate pairs = today!

UNIVERSITAT
BIELEFELD



CURRENT STATUS: ISSUES STILL REMAINING

» Minhashing enabled to compute similarity between two sets
very fast

» Shingling enabled to turn documents into sets such that
minhashing could be applied

» But if number of items N is too large, O(N?) similarity
computations are infeasible, even using minhashing
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» Minhashing enabled to compute similarity between two sets
very fast

» Shingling enabled to turn documents into sets such that
minhashing could be applied

» But if number of items N is too large, O(N?) similarity
computations are infeasible, even using minhashing

» Idea: Browse through items and determine candidate pairs:

> Number of candidate pairs is much smaller than O(N?)
» One performs minhashing only for candidate pairs
» Candidate pairs can be determined with a very fast procedure
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CURRENT STATUS: ISSUES STILL REMAINING

Minhashing enabled to compute similarity between two sets
very fast

Shingling enabled to turn documents into sets such that
minhashing could be applied

But if number of items N is too large, O(N?) similarity
computations are infeasible, even using minhashing

Idea: Browse through items and determine candidate pairs:

> Number of candidate pairs is much smaller than O(N?)
» One performs minhashing only for candidate pairs
» Candidate pairs can be determined with a very fast procedure

Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

UNIVERSITAT

BIELEFELD



LEARNING GOALS TODAY

» Understand the technique of Locality Sensitive Hashing (LSH)
» Understand the theory supporting it
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Locality Sensitive Hashing
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LOCALITY SENSITIVE HASHING: IDEA

| So | S5 | S
32 | 1
2|00

Signature matrix SIG for two permutations (hash
functions) hy, hy, and four sets Sy, Sy, S3, Sy

—

| S

hy
ha

1
0

» Hereem =5n=2

» Originally: each set is from {0,1}" (a
bitvector of length 1)

» Now: each set is from {0, ...,m — 1}"

» Much reduced representation,
because n << m
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LOCALITY SENSITIVE HASHING: IDEA

Idea:
» Hash items (columns in SIG) several
times (b times)
| S| S| Ss| Sa . o
» Candidate pair: pair of columns
hy 1 3 2 1 hashed to the same bucket, by any of
ho 0 2 0 0 the hash functions

Signature matrix SIG for two permutations (hash
functions) hy, hy, and four sets Sy, Sy, S3, Sy

» Here:m =5,n=2

» Originally: each set is from {0,1}" (a
bitvector of length 1)

» Now: each set is from {0, ...,m — 1}"

» Much reduced representation,
because n << m
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Idea:
» Hash items (columns in SIG) several
times (b times)
| S| S| Ss| Sa . o
» Candidate pair: pair of columns
hy 1 3 2 1 hashed to the same bucket, by any of
ho 0 2 0 0 the hash functions

» Runtime: Hashing all columns is
Signature matrix SIG for two permutations (hash O(N), examining buckets requires
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LOCALITY SENSITIVE HASHING: IDEA

| S1 | So | S5 | S

3 2 1
2 0 0

Signature matrix SIG for two permutations (hash
functions) hy, hy, and four sets Sy, Sy, S3, Sy

—

hy
ha

1
0

» Here:m =5,n=2

» Originally: each set is from {0,1}" (a
bitvector of length 1)

» Now: each set is from {0, ...,m — 1}"

» Much reduced representation,
because n << m
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Idea:
» Hash items (columns in SIG) several
times (b times)

» Candidate pair: pair of columns
hashed to the same bucket, by any of
the hash functions

» Runtime: Hashing all columns is
O(N), examining buckets requires
little time

Motivation:

» False Positive: dissimilar pair hashing
to the same bucket

» False Negative: similar pair never
hashing to the same bucket



LOCALITY SENSITIVE HASHING: IDEA

| S1 | So | S5 | S

3 2 1
2 0 0

Signature matrix SIG for two permutations (hash
functions) hy, hy, and four sets Sy, Sy, S3, Sy

—

h1
ha

1
0

» Here:m =5,n=2

» Originally: each set is from {0,1}" (a
bitvector of length 1)

» Now: each set is from {0, ...,m — 1}"

» Much reduced representation,
because n << m
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Idea:

» Hash items (columns in SIG) several
times (b times)

» Candidate pair: pair of columns
hashed to the same bucket, by any of
the hash functions

» Runtime: Hashing all columns is
O(N), examining buckets requires
little time

Motivation:

» False Positive: dissimilar pair hashing
to the same bucket

» False Negative: similar pair never
hashing to the same bucket

» Motivation: limit both false positives
and negatives



LOCALITY SENSITIVE HASHING: BANDING
TECHNIQUE

10002

band 1 32122

01311
band 2
band 3
band 4

Signature matrix divided into b = 4 bands of r = 3 rows each

» Divide rows of signature matrix into b bands of 7 rows each
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LOCALITY SENSITIVE HASHING: BANDING
TECHNIQUE

10002
band 1 32122
01311
band 2
band 3
band 4

Signature matrix divided into b = 4 bands of r = 3 rows each

» Divide rows of signature matrix into b bands of 7 rows each
» For each band, a hash function hashes r integers to buckets

» Number of buckets is large to avoid collisions
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LOCALITY SENSITIVE HASHING: BANDING
TECHNIQUE

10002
band 1 32122
01311
band 2
band 3
band 4

Signature matrix divided into b = 4 bands of r = 3 rows each

» Divide rows of signature matrix into b bands of 7 rows each

» For each band, a hash function hashes r integers to buckets

» Number of buckets is large to avoid collisions

» Candidate pair: a pair of columns hashed to the same bucket, in any band
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BANDING TECHNIQUE: EXAMPLE

10002
band 1 S’I’i’fi ﬁb'l [C4(3l0j) = LD

2
band 2 ;’ f"bz b‘:%'{[
band 3 /E\_‘bg 52
band 4 ’e\br\,

Signature matrix divided into b = 4 bands of r = 3 rows each

» The columns showing [0, 2, 1] in band 1 are declared a candidate pair
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BANDING TECHNIQUE: EXAMPLE

10002
band 1 32122
01311
band 2
band 3
band 4

Signature matrix divided into b = 4 bands of r = 3 rows each

» The columns showing [0, 2, 1] in band 1 are declared a candidate pair

» Other pairs of columns shown are not declared candidate pairs as per the hash
function of the first band
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BANDING TECHNIQUE: EXAMPLE

10002
band 1 32122
01311
band 2
band 3
band 4

Signature matrix divided into b = 4 bands of r = 3 rows each

» The columns showing [0, 2, 1] in band 1 are declared a candidate pair

» Other pairs of columns shown are not declared candidate pairs as per the hash
function of the first band

» apart from collisions occurring = which was designed to happen very
rarely
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BANDING TECHNIQUE: EXAMPLE

10002
band 1 32122
01311

band 2

band 3

band 4

Signature matrix divided into b = 4 bands of r = 3 rows each

» The columns showing [0, 2, 1] in band 1 are declared a candidate pair

» Other pairs of columns shown are not declared candidate pairs as per the hash
function of the first band

» apart from collisions occurring = which was designed to happen very
rarely

» Pairs of columns may be hashed to the same bucket in another band, so may be
declared candidate pairs
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BANDING TECHNIQUE: THEOREM

Let SIG be a signature matrix grouped into
» b bands of
» rrows each

and consider
» a pair of columns of Jaccard similarity s

THEOREM [LSH CANDIDATE PAIR]:
The probability that the pair of columns becomes a candidate pair is

1—(1-s"" (1)
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BANDING TECHNIQUE: PROOF OF THEOREM

PROOF.
Consider a pair of columns whose sets have Jaccard similarity s.

» Given any row, by Theorem “Minhash and Jaccard Similarity” of
last lecture, they agree in that row with probability s
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BANDING TECHNIQUE: PROOF OF THEOREM

PROOF.
Consider a pair of columns whose sets have Jaccard similarity s.

» Given any row, by Theorem “Minhash and Jaccard Similarity” of
last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the
probability to

» agree in all rows of one band is s,
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» Given any row, by Theorem “Minhash and Jaccard Similarity” of
last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the
probability to
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» disagree in at least one of the rows in aband 1 — "
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BANDING TECHNIQUE: PROOF OF THEOREM

PROOF.
Consider a pair of columns whose sets have Jaccard similarity s.

» Given any row, by Theorem “Minhash and Jaccard Similarity” of
last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the
probability to

» agree in all rows of one band is s,
» disagree in at least one of the rows in aband 1 — "
» disagree in at least one row in each band is (1 — s")"

> agree in all rows for at least one band is 1 — (1 — s")"
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BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]

For given b and 7, the S-curve is defined by the prescription
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BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]
For given b and r, the S-curve is defined by the prescription

s 1—(1—s"°

s 1—(1—=s")"
.006

.047

.186

470

.802

975

.8 .9996

No vtk Wi

Table: Values for S-curve with b = 20 and r = 5
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FINDING SIMILAR DOCUMENTS: OVERALL

WORKFLOW

Docu-

ment Shingling

The set

of strings
of length k
that appear
in the doc-

» Shingling: Done!
» Minhashing: Done!

[

Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

From mmds.org

» Locality-Sensitive Hashing: Done!
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Candidate
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those pairs
of signatures
that we need
to test for
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LOCALITY SENSITIVE HASHING: GUIDELINES

» One needs to determine b, r
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LOCALITY SENSITIVE HASHING

» One needs to determine b, r

» One needs to determine threshold #:

» s > t: candidate pair
» 5 < t: no candidate pair
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LOCALITY SENSITIVE HASHING: GUIDELINES

» One needs to determine b, r

» One needs to determine threshold #:

» s > t: candidate pair
» 5 < t: no candidate pair

» bands times rows is number of rows of signature matrix =
br=mn
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LOCALITY SENSITIVE HASHING: GUIDELINES

» One needs to determine b, r

» One needs to determine threshold #:

» s > t: candidate pair
» 5 < t: no candidate pair

» bands times rows is number of rows of signature matrix =
br=mn

» t corresponds with point of steepest rise on S-curve:
approximately (1/b)(1/7
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FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:
» Pick k and determine k-shingles for each document
» Sort shingles, document is bitvector over universe of shingles
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FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:
» Pick k and determine k-shingles for each document
» Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

» Pick n hash functions
» Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

» Pick threshold t, number of bands b and rows r
> Avoiding false negatives: choose t, b, r such that t ~ (1/b)/7 is low
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FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:
» Pick k and determine k-shingles for each document
» Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

» Pick n hash functions
» Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

» Pick threshold t, number of bands b and rows r

> Avoiding false negatives: choose t, b, r such that t ~ (1/b)/7 is low

» If avoiding false positives, or speed is important, choose t, b, r such that
t ~ (1/b)V/" is large
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FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:

>
>

Pick k and determine k-shingles for each document
Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

>
>

Pick n hash functions
Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

>
>
>
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Pick threshold t, number of bands b and rows r

Avoiding false negatives: choose t, b, r such that t ~ (1/ b)l/ "is low

If avoiding false positives, or speed is important, choose t, b,  such that
t ~ (1/b)V/" is large

Determine candidate pairs by applying the banding technique



FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:

>
>

Pick k and determine k-shingles for each document
Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

>
>

Pick n hash functions
Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

>
>
>

>

Pick threshold t, number of bands b and rows r

Avoiding false negatives: choose t, b, r such that t ~ (1/ b)l/ "is low

If avoiding false positives, or speed is important, choose t, b,  such that
t ~ (1/b)V/" is large

Determine candidate pairs by applying the banding technique

4. Return to signatures of candidate pairs and determine whether fraction
of components where they agree is at least ¢
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Distance Measures

UNIVERSITAT
BIELEFELD




DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]

Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x,y to a number such that
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DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]

Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x,y to a number such that

1. d(x,y) > 0 [d is non-negative]
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DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]

Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x,y to a number such that

1. d(x,y) > 0 [d is non-negative]

2. d(x,y) = 0 implies x = y [only if two objects are identical, the
distance is zero; strictly positive otherwise]
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DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]

Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x,y to a number such that

1. d(x,y) > 0 [d is non-negative]

2. d(x,y) = 0 implies x = y [only if two objects are identical, the
distance is zero; strictly positive otherwise]

3. d(x,y) = d(y, x) [distance is symmetric]
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DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]

Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x,y to a number such that

1. d(x,y) > 0 [d is non-negative]

2. d(x,y) = 0 implies x = y [only if two objects are identical, the
distance is zero; strictly positive otherwise]

3. d(x,y) = d(y, x) [distance is symmetric]
4. d(x,z) <d(x,y) +d(y, z) [triangle inequality]
N N
ol.CY(‘i) AC‘fti
>
\( A_CX(’%') T
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DISTANCE MEASURES: EXAMPLES

» In an n-dimensional Euclidean space, points are vectors of length # of real
numbers

» The L,-distance, defined to be

n

d [X],...7 } [y17~ 7yn] :(Z ‘xi_yi‘r)l/r (4)

i=1
is a distance measure

» A particular example is the Euclidean distance, defined as the
L>-distance
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DISTANCE MEASURES: EXAMPLES

»

UNIVERSITAT
BIELEFELD

In an n-dimensional Euclidean space, points are vectors of length n of real
numbers

The L,-distance, defined to be
A([x1, o ], 1, s ya]) = O I — il )Y (4)
i=1

is a distance measure

A particular example is the Euclidean distance, defined as the
L>-distance

Cosine: Let ||x]]2 = /> i, |xi|> be the Lo-norm of a point in Euclidean
space. The cosine similarity for two points [x1, ..., Xx], [y, ..., ¥x] is defined

to be .,
Doica Xili

5
il vl ©)

» Measures the angle between two vectors x and y
> Gives rise to distance measure between lines that pass through origin



DISTANCE MEASURES: EXAMPLES

» Let SIM(x,y) be the Jaccard similarity between two sets x, . The
quantity
1 - SIM(x,) ©)

can be proven to be a distance measure.
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DISTANCE MEASURES: EXAMPLES

» Let SIM(x,y) be the Jaccard similarity between two sets x, . The
quantity
1 - SIM(x,) ©)

can be proven to be a distance measure.

» Edit distance: Objects are strings. The edit distance between two
strings x = X1...Xy, Y = Y1...lY» is the smallest number of
insertions and deletions of single characters to be applied to turn
xinto y.
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DISTANCE MEASURES: EXAMPLES

» Let SIM(x,y) be the Jaccard similarity between two sets x, . The
quantity
1 - SIM(x,) ©)

can be proven to be a distance measure.

» Edit distance: Objects are strings. The edit distance between two
strings x = X1...Xy, Y = Y1...lY» is the smallest number of
insertions and deletions of single characters to be applied to turn
xinto y.

» Hamming Distance: For [x1, ..., Xn], [Y1, ---, Yu), the Hamming
distance is the number of positions i € [1, ..., n] where x; # y;
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Edit Distance Dg:

EDIT / HAMMING DISTANCE: EXAMPLE

Consider x = "abcde” ,y = 7acfdeg”. Claim: Dg(x,y) = 3.
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EDIT / HAMMING DISTANCE: EXAMPLE

Edit Distance Dg:
Consider x = "abcde” ,y = 7acfdeg”. Claim: Dg(x,y) = 3.

» For proving De(x,y) < 3, consider edit sequence
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EDIT / HAMMING DISTANCE: EXAMPLE

Edit Distance Dg:
Consider x = "abcde” ,y = 7acfdeg”. Claim: Dg(x,y) = 3.

» For proving De(x,y) < 3, consider edit sequence
1. Delete b
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EDIT / HAMMING DISTANCE: EXAMPLE

Edit Distance Dg:
Consider x = "abcde” ,y = 7acfdeg”. Claim: Dg(x,y) = 3.
» For proving De(x,y) < 3, consider edit sequence

1. Delete b
2. Insertf after ¢
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EDIT / HAMMING DISTANCE: EXAMPLE

Edit Distance Dg:
Consider x = "abcde” ,y = 7acfdeg”. Claim: Dg(x,y) = 3.
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EDIT / HAMMING DISTANCE: EXAMPLE

Edit Distance Dg:
Consider x = "abcde” ,y = 7acfdeg”. Claim: Dg(x,y) = 3.

» For proving De(x,y) < 3, consider edit sequence

1. Delete b
2. Insertf after ¢
3. Insert g after e

» For Dg(x,y) > 3, consider that x contains b, which y does not, which
holds vice versa for f, g. This implies that 3 edit operations are
necessary at least.
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EDIT / HAMMING DISTANCE: EXAMPLE

Edit Distance Dg:
Consider x = "abcde” ,y = 7acfdeg”. Claim: Dg(x,y) = 3.
» For proving De(x,y) < 3, consider edit sequence

1. Delete b
2. Insertf after ¢
3. Insert g after e

» For Dg(x,y) > 3, consider that x contains b, which y does not, which
holds vice versa for f, g. This implies that 3 edit operations are
necessary at least.

Hamming Distance Dy:
Consider x = 10101,y = 11110:

Du(x,y) =3
because disagreeing in 3 positions (of five overall).
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Locality Sensitive Functions

UNIVERSITAT
BIELEFELD




LOCALITY SENSITIVE FAMILY OF FUNCTIONS:
DEFINITION

» Consider functions f that hash items. The notation f(x) = f(y) means
that x and y form a candidate pair.
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LOCALITY SENSITIVE FAMILY OF FUNCTIONS:
DEFINITION

» Consider functions f that hash items. The notation f(x) = f(y) means
that x and y form a candidate pair.

» A collection F of functions f of this form is called a family of functions
» Unless stated otherwise, d(x,y) = 1 — SIM(x, y) is the Jaccard distance

DEFINITION: [LOCALITY SENSITIVE (LS) FAMILY OF FUNCTIONS]
A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for each f € F:
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» Consider functions f that hash items. The notation f(x) = f(y) means
that x and y form a candidate pair.

» A collection F of functions f of this form is called a family of functions
» Unless stated otherwise, d(x,y) = 1 — SIM(x, y) is the Jaccard distance

DEFINITION: [LOCALITY SENSITIVE (LS) FAMILY OF FUNCTIONS]
A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for each f € F:

1. d(x,y) < dy implies that the probability that f(x) = f(y) is at least p;
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LOCALITY SENSITIVE FAMILY OF FUNCTIONS:
DEFINITION

» Consider functions f that hash items. The notation f(x) = f(y) means
that x and y form a candidate pair.

» A collection F of functions f of this form is called a family of functions
» Unless stated otherwise, d(x,y) = 1 — SIM(x, y) is the Jaccard distance

DEFINITION: [LOCALITY SENSITIVE (LS) FAMILY OF FUNCTIONS]
A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for each f € F:

1. d(x,y) < dy implies that the probability that f(x) = f(y) is at least p;
2. d(x,y) > dz implies that the probability that f(x) = f(y) is at most p»
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LS FAMILY OF FUNCTION: ILLUSTRATION

Probabilty

of being

declared a
candidate P,

I I
I I
I 1
I I
Py po--Te o
I
I
I
I
I
I
I
I

dy ds

Distance ——»

Behaviour of any member of a (d1, dy, p1, p2)-sensitive family of function
From mmds.org
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LS FAMILY OF FUNCTIONS: EXAMPLE

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic
matrix to the minimum value the rows, in which there are 1’s in the
column, get hashed to.
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LS FAMILY OF FUNCTIONS: EXAMPLE

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic
matrix to the minimum value the rows, in which there are 1’s in the
column, get hashed to.

EXAMPLE: LS FAMILY OF MINHASH FUNCTIONS

» Consider d(x,y) =1 — SIM(x, y) to measure the distance
between two sets x, .
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LS FAMILY OF FUNCTIONS: EXAMPLE

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic
matrix to the minimum value the rows, in which there are 1’s in the
column, get hashed to.

EXAMPLE: LS FAMILY OF MINHASH FUNCTIONS

» Consider d(x,y) =1 — SIM(x, y) to measure the distance
between two sets x, .

» Then it holds that the family of minhash functions is a
(d1,d2,1 —d1,1 — dy)-sensitive family for any 0 < dy < d, < 1.
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LS FAMILY OF FUNCTIONS: EXAMPLE

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic
matrix to the minimum value the rows, in which there are 1’s in the
column, get hashed to.

EXAMPLE: LS FAMILY OF MINHASH FUNCTIONS

» Consider d(x,y) =1 — SIM(x, y) to measure the distance
between two sets x, .

» Then it holds that the family of minhash functions is a
(d1,d2,1 —d1,1 — dy)-sensitive family for any 0 < dy < d, < 1.

PROOF: By definition, d(x,y) < d; implies

SIM(x,y) =1 —d(x,y) > 1 — d;. If, on the other hand, d(x,y) > d,, we
obtain SIM(x,y) =1 —d(x,y) <1—d;
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
AND-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; anp by the following principle:
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
AND-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; anp by the following principle:

» Each single member of f € F; anp is based on r members f1, ..., fr
of F.
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
AND-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; anp by the following principle:

» Each single member of f € F; anp is based on r members f1, ..., fr
of F.

fx)=fly) < filx)=fily)foralli=1,...r (7)
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
AND-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; anp by the following principle:

» Each single member of f € F; anp is based on r members f1, ..., fr
of F.

fx)=fly) < filx)=fily)foralli=1,...r (7)

Example: Consider the members of one band of size r when applying
the banding technique.
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
AND-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; anp by the following principle:

» Each single member of f € F; anp is based on r members f1, ..., fr
of F.

fx)=fly) < filx)=fily)foralli=1,...r (7)

Example: Consider the members of one band of size r when applying
the banding technique.

Fact: It is easy to show (consider yourself!) that 7, anp is a

(d1,da, (p1)", (p2)")-sensitive family of functions
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
OR-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; or by the following principle:
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
OR-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; or by the following principle:

» Each single member of f € F; o is based on b members fi, ..., f;
of F.
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
OR-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; or by the following principle:

» Each single member of f € F; o is based on b members fi, ..., f;
of F.

fx)=fy) < filx)=fily)foronei=1,..r (8)

UNIVERSITAT
BIELEFELD



AMPLIFYING LS FAMILIES OF FUNCTIONS:
OR-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; or by the following principle:

» Each single member of f € F; o is based on b members fi, ..., f;
of F.

fx)=fy) < filx)=fily)foronei=1,..r (8)

Example: The OR-construction reflects the effect of combining
several bands when applying the banding technique.
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AMPLIFYING LS FAMILIES OF FUNCTIONS:
OR-CONSTRUCTION

Consider a (d1,ds, p1, p2)-sensitive family F. We construct a new
family F; or by the following principle:

» Each single member of f € F; o is based on b members fi, ..., f;
of F.

f@) =fy) & fx)=fiy)foronei=1,...r (@

Example: The OR-construction reflects the effect of combining
several bands when applying the banding technique.

Fact: It is easy to show (consider yourself again!) that 7 oz is a
(d1,d2,1 — (1 —p1)?, 1 — (1 — po)?)-sensitive family of functions.
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AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY
SENSITIVE HASHING

Example: Applying the OR-construction to F; anp, yielding
(Fr,aND)b,0r reflects applying the banding technique altogether, and
varying p1, p» reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do.
For example:
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AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY
SENSITIVE HASHING

Example: Applying the OR-construction to F; anp, yielding
(Fr,aND)b,0r reflects applying the banding technique altogether, and
varying p1, p» reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do.
For example:

» How does behaviour change when varying r and b?
15 S-curve
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AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY
SENSITIVE HASHING

Example: Applying the OR-construction to F; anp, yielding
(Fr,aND)b,0r reflects applying the banding technique altogether, and
varying p1, p» reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do.
For example:

» How does behaviour change when varying r and b?
15 S-curve

» What happens when exhanging AND and OR?
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AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY
SENSITIVE HASHING

p |[1-(-pYH! p | (-—a-pY*
2 0.0064 0.1 0.0140

0.3 0.0320 0.2 0.1215

0.4 0.0985 0.3 0.3334

0.5 0.2275 0.4 0.5740

0.6 0.4260 05 0.7725

0.7 0.6666 0.6 0.9015

0.8 0.8785 0.7 0.9680

0.9 0.9860 0.8 0.9936

Original family F is (0.2,0.6,0.8, 0.4)-sensitive.

Left: Applying first the AND- and then the OR-construction, reflecting
locality sensitive hashing, yields a (0.2, 0.6, 0.8785, 0.0985)-sensitive family.

Right: Applying first the OR- and then the AND-construction, yields a
(0.2,0.6,0.9936, 0.5740)-sensitive family.
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LS Families for Other Distance Measures
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LS Families for Hamming Distance
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LS FAMILIES FOR HAMMING DISTANCE

» Assume we have a d-dimensional vector space V

» Let hi(x,y) be the Hamming distance between vectors
x=(x1,.., %),y = (Y1,...,¥q) € V
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LS FAMILIES FOR HAMMING DISTANCE

» Assume we have a d-dimensional vector space V

» Let h(x,y) be the Hamming distance between vectors
x= (X1, %),y = W1, ya) €V

» Let fi(x) := x; be the entry of x at the i-th position

» Sofi(x) =fi(y) if and only if x; = y;
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LS FAMILIES FOR HAMMING DISTANCE

» Assume we have a d-dimensional vector space V
» Let h(x,y) be the Hamming distance between vectors
x= (X1, %),y = W1, ya) €V
» Let fi(x) := x; be the entry of x at the i-th position
So fi(x) = fi(y) if and only if x; = y;
» For randomly chosen x, y, the probability that fi(x) = fi(y) is
d—hxy) , _hy)
d d

the fraction of positions in which x and y agree

v
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LS FAMILIES FOR HAMMING DISTANCE

v

Assume we have a d-dimensional vector space V
Let h(x, y) be the Hamming distance between vectors
x= (X1, %),y = W1, ya) €V
Let fi(x) := x; be the entry of x at the i-th position
So fi(x) = fi(y) if and only if x; = y;
For randomly chosen x, y, the probability that f;(x) = fi(y) is
d—hxy) , _hy)
d d

the fraction of positions in which x and y agree

Thus, the family F of {f1,...,fs} is
d d> ..
(di,d2,1— R 1- g) — sensitive

forany di < d>
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LS FAMILIES FOR HAMMING DISTANCE

» Let h(x,y) be the Hamming distance between vectors
x=(x1, %),y = (Y1, -, Ya) €V
» Sofi(x) = fi(y) if and only if x; = y;

» The family F of {f1, ..., fy} is (d1,d2,1 — %1, 1-— %2) — sensitive for any d; < dy

DIFFERENCES

» Jaccard distance runs from 0 to 1, Hamming distance from 0 to d:
need to scale with 1/d
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LS FAMILIES FOR HAMMING DISTANCE

» Let h(x,y) be the Hamming distance between vectors
x=(x1, %),y = (Y1, -, Ya) €V
» Sofi(x) = fi(y) if and only if x; = y;

» The family F of {f1, ..., fy} is (d1,d2,1 — %1, 1-— %2) — sensitive for any d; < dy

DIFFERENCES

» Jaccard distance runs from 0 to 1, Hamming distance from 0 to d:
need to scale with 1/d

» There is an unlimited number of minhash functions, but size of
Fisonlyd
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LS FAMILIES FOR HAMMING DISTANCE

» Let h(x,y) be the Hamming distance between vectors
= (¥, Xa) Y = (Y15 Ya) €V
» Sofi(x) = fi(y) if and only if x; = y;
» The family F of {f1, ..., fy} is (d1,d2,1 — %1, 1-— %2) — sensitive for any d; < dy
DIFFERENCES

» Jaccard distance runs from 0 to 1, Hamming distance from 0 to d:
need to scale with 1/d

» There is an unlimited number of minhash functions, but size of
Fisonlyd

» The limited size of F puts limits to AND/OR constructions
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LS FAMILIES FOR COSINE DISTANCE

Two vectors making an angle ¢
From mmds.org

between them

» Cosine distance for x,y € V corresponds with the angle 6(x, y) € [0, 180]
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LS FAMILIES FOR COSINE DISTANCE

Two vectors making an angle ¢
From mmds.org

» Cosine distance for x,y € V corresponds with the angle 6(x, y) € [0, 180]
between them

» Whatever the dimension d = dim V, two vectors x, y span a plane
V(x,y) (so dim V(x,y) = 2)

» Angle 6 is measured in that plane V(x,y)
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle 6
From mmds.org

» Any hyperplane (dimension dim V — 1) intersects V(x, y) in a line
» Figure: two hyperplanes, indicated by dotted and dashed line
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle 6
From mmds.org

» Any hyperplane (dimension dim V — 1) intersects V(x, y) in a line
» Figure: two hyperplanes, indicated by dotted and dashed line
» Determine hyperplanes U by picking normal vectors v

» Thatis
U={uecV]|(uov) =0}
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle 6
From mmds.org

» Consider dashed line hyperplane U: x and y on different sides
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle 6
From mmds.org

» Consider dashed line hyperplane U: x and y on different sides
» Let v be normal vector of U:
sgn(x, v) # sgn(y,v)

LBJI'EL‘IEE:'ESLISK§O one scalar product is positive and the other one is negative



LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle 6
From mmds.org

» Consider dotted line hyperplane U: x and y on the same side
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle 6
From mmds.org

» Consider dotted line hyperplane U: x and y on the same side
» Let v be normal vector of U:
sgn(x,v) = sgn(y,v)

overs S0 Poth scalar products positive or both negative
BIELEFELD



LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle 6
From mmds.org

» Probability to choose x,y at an angle 6(x,y) and

» hyperplane like dashed line: 0(x,y)/180
» hyperplane like dotted line: (180 — 6(x,y))/180

» Consider hash functions f corresponding to randomly picked normal
vectors vy
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ¢
From mmds.org

» Consider family F of hash functions f corresponding to randomly
picked hyperplanes, represented by their normal vectors vy
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ¢
From mmds.org

» Consider family F of hash functions f corresponding to randomly
picked hyperplanes, represented by their normal vectors vy

» Forx,yeV,let

f(x) =f(y) ifandonlyif sgn(vy,x) = sgn(vs,y)
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ¢
From mmds.org

» Consider family F of hash functions f corresponding to randomly
picked hyperplanes, represented by their normal vectors vy

» Forx,yeV,let
f(x) =f(y) ifandonlyif sgn(vy,x) = sgn(vs,y)
» Fis(di,dz, (180 — d1)/180, (180 — d)/180)-sensitive
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LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ¢
From mmds.org

» Consider family F of hash functions f corresponding to randomly
picked hyperplanes, represented by their normal vectors vy

» Forx,yeV,let
f(x) =f(y) ifandonlyif sgn(vy,x) = sgn(vs,y)
» Fis(di,dz, (180 — d1)/180, (180 — d)/180)-sensitive

» One can amplify the family as desired

. » Apart from rescaling by 180, F is just like minhash family
i



SAMPLING RANDOM NORMAL VECTORS: SKETCHES

» When determining normal vectors of random hyperplanes, it
can be shown that it suffices to pick random vectors with entries
either —1 or +1

» Letuvy,...,v, be such random vectors
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SAMPLING RANDOM NORMAL VECTORS: SKETCHES

» When determining normal vectors of random hyperplanes, it
can be shown that it suffices to pick random vectors with entries
either —1 or +1

» Letuvy,...,v, be such random vectors
» For a vector x, the array
[sgn(v1,x), ..., sgn(v,, x)] € [—1,+1]" )

is said to be the sketch of x
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SKETCHES: EXAMPLE

> Letx=[3,4,56],y=[4,3,21]

» Letv, = [+1,-1,+1,+1],v, = [-1,+1, -1, +1],03 =
[+17+17_17_1]
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SKETCHES: EXAMPLE

> Letx=[3,4,56],y=[4,3,21]

» Letv, = [+1,-1,+1,+1],v, = [-1,+1, -1, +1],03 =
[+17+17_17_1]

» Then

» Sketch of xis [+1, +1, —1]

UNIVERSITAT
BIELEFELD




SKETCHES: EXAMPLE

> Letx=[3,4,56],y=[4,3,21]

» Letv, = [+1,-1,+1,+1],v, = [-1,+1, -1, +1],03 =
[+17+17_17_1]

» Then

» Sketch of xis [+1, +1, —1]
» Sketch of yis [+1, —1,+1]
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SKETCHES: EXAMPLE

» Letx =[3,4,5,6],y =[4,3,2,1]

» Letv, = [+1,-1,+1,+1],v, = [-1,+1, -1, +1],03 =
[+17+17_17_1]

» Then

» Sketch of xis [+1, +1, —1]

» Sketch of yis [+1, —1,+1]

» Sketches of x,y agree in 1 out of 3 positions: we estimate
0(x,y) =120
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SKETCHES: EXAMPLE

> Letx=[3,4,56],y=[4,3,21]

» Letv, = [+1,-1,+1,+1],v, = [-1,+1, -1, +1],03 =
[+17 +17 _17 _1]
» Then
» Sketch of xis [+1, +1, —1]
» Sketch of yis [+1, —1,+1]
» Sketches of x,y agree in 1 out of 3 positions: we estimate
0(x,y) =120
» However true 0(x,y) = 38
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SKETCHES: EXAMPLE

> Letx=[3,4,56],y=[4,3,21]

» Letv, = [+1,-1,+1,+1],v, = [-1,+1, -1, +1],03 =
[+17 +17 _17 _1]
» Then
» Sketch of xis [+1, +1, —1]
» Sketch of yis [+1, —1,+1]
» Sketches of x,y agree in 1 out of 3 positions: we estimate
0(x,y) =120
» However true 0(x,y) = 38

» There are 16 different vectors with +1, —1 (cardinality of
{-1,+1}*is 16)
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SKETCHES: EXAMPLE

» Letx =[3,4,5,6],y =[4,3,2,1]
» Letv, = [+1,-1,+1,+1],v, = [-1,+1, -1, +1],03 =
[+17 +17 _17 _1]
» Then
» Sketch of xis [+1, +1, —1]
» Sketch of yis [+1, —1,+1]
» Sketches of x,y agree in 1 out of 3 positions: we estimate

0(x,y) =120
» However true 0(x,y) = 38

» There are 16 different vectors with +1, —1 (cardinality of
{-1,+1}*is 16)

» Computing sketches based on all of them yields estimate

0(x,y) =45
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LS FAMILIES FOR EUCLIDEAN DISTANCE

Points at
distance d
0

-
Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» Let us consider 2-dimensional space V
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LS FAMILIES FOR EUCLIDEAN DISTANCE

Points at
distance d
0

-
Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» Let us consider 2-dimensional space V

» Each member f of family F is associated with line in V
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LS FAMILIES FOR EUCLIDEAN DISTANCE

Points at
distance d
0

-
Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» Let us consider 2-dimensional space V
» Each member f of family F is associated with line in V

» Line is divided into buckets (segments) of length a
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LS FAMILIES FOR EUCLIDEAN DISTANCE

Points at
distance d
0

-
Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» Let us consider 2-dimensional space V
» Each member f of family F is associated with line in V
>

Line is divided into buckets (segments) of length a

v

Points x,y € V are “hashed” to buckets

UNIVERSITAF () = f(17) when hashed to the same segment



LS FAMILIES FOR EUCLIDEAN DISTANCE

k Points at
! distance d
| )

Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability

From mmds.org

» If Euclidean distance d(x,y) < a/2, then probability to hash x, y to same
segment is at least 1/2
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LS FAMILIES FOR EUCLIDEAN DISTANCE

k Points at
! distance d
| )

Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» If Euclidean distance d(x,y) < a/2, then probability to hash x, y to same
segment is at least 1/2
» Distance between x, y after projecting is d(x,y) cos 6§ < d(x,y) < a/2
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LS FAMILIES FOR EUCLIDEAN DISTANCE

Points at
distance d
6

-
Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» If distance between x, y after projecting is greater than a, they will be
hashed to different buckets
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LS FAMILIES FOR EUCLIDEAN DISTANCE

i Points at

| distance d
I

| )

Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» If distance between x, y after projecting is greater than a, they will be
hashed to different buckets

» So, if d(x,y) > 2a, we have that d(x, y) cos @ > a for 6 € [0, 60]
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LS FAMILIES FOR EUCLIDEAN DISTANCE

i Points at

| distance d
I

| )

Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» If distance between x, y after projecting is greater than a, they will be
hashed to different buckets

» So, if d(x,y) > 2a, we have that d(x, y) cos @ > a for 6 € [0, 60]
» It holds that 6 € [0, 60] with probability 2/3 (note: here 6 € [0, 90])
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LS FAMILIES FOR EUCLIDEAN DISTANCE

k Points at
! distance d
| )

Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» In conclusion, the family described has been
(a/2,2a,1/2,1/3) — sensitive
» Family can be amplified as desired
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LS FAMILIES FOR EUCLIDEAN DISTANCE

k Points at
! distance d
| )

-
Bucket
width a

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

» In conclusion, the family described has been
(a/2,2a,1/2,1/3) — sensitive

» Family can be amplified as desired

» If families for arbitrary di; < d» (and notjustd; = a/2,d> = 2a), and also
for arbitrary-dimensional vector spaces are desired, special efforts are
Bl e Fequired



MATERIALS / OUTLOOK

» See Mining of Massive Datasets, chapter 3.4-3.7

» See http://www.mmds.org/ for further resources

» Next lecture: “Map Reduce / Workflow Systems I”
» See Mining of Massive Datasets 2.1-2.4
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