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TODAY

Announcements
» Lecture will be recorded, edited and posted (as usual)
» From today, topics are relevant for exam

» Reminder: Please assign yourself to a group in the LernraumPlus,
if desired; individual work possible, of course

» Groups were supposed to be up to 2-3 people, to collectively
submit solutions and present in tutorials
Learning Goals

» Turning documents into sets = shingles

» Computing the similarity of sets &= minhashing
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Finding Similar Items: Introduction

UNIVERSITAT
BIELEFELD



FINDING SIMILAR ITEMS

Fundamental problem in data mining: retrieve pairs of similar
elements of a dataset.

Applications

» Detecting plagiarism in a set of documents
» Identifying near-identical mirror pages during web searches
» Identifying documents from the same author

» Collaborative Filtering

» Online Purchases (Amazon: suggestions based on “similar’
customers)
» Movie Ratings (Netflix: suggestions based on ‘similar” users)
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ISSUES

Consider a dataset of N items, for example: N webpages or N text
documents.
» Comparing all items requires O(N?) runtime.
» Ok for small N.
> If N ~ 10°, we have 10'? comparisons. Maybe not OK!
» How to efficiently compute similarity if items themselves are
large?

» Similarity works well for sets of items. How to turn data into
sets of items?
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OVERVIEW

Docu-
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similarity

From mmds.org

» Shingling: turning text files into sets

» Minhashing: computing similarity for large sets

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

» Locality Sensitive Hashing: avoids O(N?) comparisons by
determining candidate pairs
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mmds.org

Shingles

Turning Documents into Sets
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JACCARD SIMILARITY

DEFINITION [JACCARD SIMILARITY]
Consider two sets S and T. The Jaccard similarity SIM(S, T) is defined as

SN T

SIM(S, T) = 5y

)

the ratio of elements in the intersection and in the union of S and T.

SIM(S,T) = 3
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SHINGLES: DEFINITION

vvyyvyy

Document = large string of characters
k-shingle: a substring of a particular length k
Idea: A document is set of k-shingles

Example: document = “acadacc”, k-shingles for k = 2:
{ac,ad, ca,cc,da}

We can now compute Jaccard similarity for two documents by
considering them as sets of shingles.

Example: documents Dy = ”abcd”, D, = ”dbcd” using 2-shingles yields
Dy = {ab,bc,cd}, D, = {bc,cd, db}, so

SIM(D1, D2) = rngesibiy {u\bfg;;;j};b}l =2/4=1/2

UNIVERSITAT
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SHINGLES: DEFINITION

Issue: Determining right size of k.

» [ large enough such that any particular k-shingle appears in document
with low probability (k = 5, yielding 256° different shingles on 256
different characters, ok for emails)

» too large k yields too large universe of elements (example: k = 9 means
256° = (28)° = 272 on the order of number of atoms in the universe)

Solution if necessary k is too large: hash shingles to buckets, such that
buckets are evenly covered, and collisions are rare

We would like to compute Jaccard similarity for pairs of sets

But: even when hashed, size of the universe of elements (= # buckets
when hashed) may be prohibitive to do that fast

What to do?
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Minhashing

Rapidly Computing Similarity of Sets
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SETS AS BITVECTORS

» Representing sets as bitvectors

» Length of bitvectors is size of universal set

» For example, when hashed, length of bitvector = number of
buckets

» Entries zero if element not in set, one if element in set

» Does not reflect to really store the sets, but nice visualization
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SETS AS BITVECTORS: THE CHARACTERISTIC MATRIX

DEFINITION [CHARACTERISTIC MATRIX]

Given C sets over a universe R, the characteristic matrix
M € {0, 1}IRIXI€l is defined to have entries

0 ifregc
M(r,c) = 2
(r.c) {1 ifrec @)
forre R,c € C.
Element | Sy | S2 | S3 | Sa
a 1 0 0 1
b 0 0 1 0
c 0 1 0 1
d 1 0 1 1
e 0 0 1 0

Characteristic matrix of four sets (S1, Sz, S3, S4) over universal set {a, b, ¢, d, e}

UNIVERSITAT From mmds . org
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mmds.org

PERMUTATIONS

DEFINITION [BIJECTION,PERMUTATION]

» A bijection isamap 7 : S — S such that

» 7n(x) = n(y) implies x = y (7 is injective)
» Forally € Sthereisx € S such that 7(x) = y (7 is surjective)

» A permutation is a bijection

m:{l,...m} = {1,....,m} 3)

Example: A permutation on {1,2,3,4,5} may map

1—-542—-33—>1,4—5and5—2
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PERMUTING ROWS OF CHARACTERISTIC MATRIX

FElement | Sl | 52 | Sg | 54 Element | Sl | 52 | Sg | 54
a 1 0 0 1 b 0 0 1 0
b 0 0 1 0 e 0 0 1 0
c 0 1 0 1 a 1 0 0 1
d 1 0 1 1 d 1 0 1 1
e 0 0 1 0 c 0 1 0 1

A characteristic matrix of four sets (51, Sz, S3, S4) over universal set
{a,b,c,d, e} and a permutation of itsrows 1 — 3,2 -+ 1,3 -+ 5,4 - 4,5 - 2
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MINHASH - DEFINITION

Given
» a characteristic matrix with m rows and a column S
» apermutation 7 on the rows, thatis = : {1,...,m} — {1,...,m} is

a bijection

DEFINITION [MINHASH]
The minhash function h, on S is defined by

hx(S) = ie{Ilr,l.i.I.l,m}{W(i) | Sl =1}
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MINHASH - DEFINITION

DEFINITION [MINHASH]
The minhash function h, on S is defined by

he(S) = _min {m(@) [ S[] =1}

ie{l,..

EXPLANATION
The minhash of a column S relative to permutation = is

» after reordering rows according to the permutation 7

» the first row in which a one in S appears
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MINHASH - EXAMPLE

EXAMPLE
Let

» 1 correspondstoa,2tob, ...

» 7:1—-532—-1,3—>54—45—2and

UNIVERSITAT
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FElement | 51 | 52 | S’g | 54
b 0 0 1 0
e 0 0 1 0
a 1 0 0 1
d 1 0 1 1
c 0 1 0 1



MINHASHING AND JACCARD SIMILARITY

Given
» two columns (sets) S1, S; of a characteristic matrix

» arandomly picked permutation 7 on the rows (on {1, ...,m})

THEOREM [MINHASH AND JACCARD SIMILARITY]:
The probability that /1 (S1) = h-(S2) is SIM(S51, S,).
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MINHASH AND JACCARD SIMILARITY - PROOF

THEOREM [MINHASH AND JACCARD SIMILARITY]:
The probability that /1 (S1) = hx(S2) is SIM(S1, S).

PROOF.
Distinguish three different classes of rows:

» Type X rows have a 1 in both 51, 5,
» Type Y rows have a 1 in only one of 51, S,

» Type Z rows have a 0 in both Sy, S»

Let x be the number of type X rows and y the number of type Y rows.
» Sox = |S1 n 52| andx+y: |S] U 52|

» Hence
. [S1 N Sy X @)
- |51 U 52| - xX+y

SIM(S1, S2)
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MINHASH AND JACCARD SIMILARITY - PROOF

PROOF. (CONT.)
» Consider the probability that h(S1) = h(S»)
» Imagine rows to be permuted randomly, and proceed from the
top
» The probability to encounter type X before type Y is
x
xX+y

(5)

» If first non type Z row is type X, then h(S1) = h(Sz)
» If first non type Z row is type Y, then h(S1) # h(Sz)

» So h(S1) = h(S,) happens with probability (5), which by (4)
concludes the proof.
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MINHASH - INTERMEDIATE SUMMARY / EXPANSION
OF IDEA

» Computing a minhash means turning a set into one number

» For different sets, numbers agree with probability equal to their
Jaccard similarity.

» Can we expand on this idea? Can we compute (ensembles of)
numbers that enable us to determine their Jaccard similarity?

» Immediate idea: compute several minhashes. The fraction of
times the minhashes of two sets agree equals their Jaccard
similarity.

» Several sufficiently well chosen minhashes yield a minhash
signature.

UNIVERSITAT
BIELEFELD



MINHASH SIGNATURES

Consider
» the m rows of the characteristic matrix
» 1 permutations {1,...,m} — {1,...,m}

» the corresponding minhash functions
hi, ...k, - {0, 13" — {1, ...,m}

» and a particular column S € {0,1}"
w ;(S) € {1,...,m}forany 1 <i<n

DEFINITION [MINHASH SIGNATURE]
The minhash signature SIGg of S given hy, ..., h, is the array

11(S), .o 1a(S)] € {1,...., m}"

UNIVERSITAT
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MINHASH SIGNATURES

DEFINITION [MINHASH SIGNATURE]
The minhash signature SIGs of S given hy, ..., h, is the array

11(S), ... hn(S)] € {1, ..., m}"

Meaning: Computing the minhash signature for a column S turns

» the binary-valued array of length m that represents S
~ Se{0,1}"

» into an m-valued array of length n
< [h1(S), ... ha(S)] € {1, ..., m}"

Because n < m (often n << m), the minhash signature is a reduced
representation of a set.
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SIGNATURE MATRIX

Consider a characteristic matrix, and n permutations hy, ..., 1.

DEFINITION [SIGNATURE MATRIX]

The signature matrix SIG is a matrix with n rows and as many
columns as the characteristic matrix (i.e. the number of sets), where
entries SIG;; are defined by

SIG;; = hi(S;) (6)

where §; refers to the j-th column in the characteristic matrix.
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SIGNATURE MATRICES: FACTS

Let M be a signature matrix.

» Because usually n << m, that is n is much smaller than m, a
signature matrix is much smaller than the original characteristic
matrix.

» The probability that SIG;;, = SIGy;, for two sets S;,, S, equals the
Jaccard similarity SIM(S;,, S;,)

» The expected number of rows where columns ji, j, agree,
divided by 7, is SIM(S;,, S;,).
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SIGNATURE MATRICES: ISSUES

Issue:

» For large m, it is time-consuming / storage-intense to determine
permutations
m:{l,...,m} = {1,...,m}

» Re-sorting rows relative to a permutation is even more expensive

Solution:

» Instead of permutations, use hash functions (watch the index shift!)

h:{0,...m—-1} - {0,...,m —1}

» Likely, a hash function is not a bijection, so at times

» places two rows in the same bucket
> leaves other buckets empty

» Effects are negligible for our purposes, however

UNIVERSITAT
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COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
h; {O, ey M — 1} —
{0,...m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*IC]

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1,...,m}"*ICl

UNIVERSITAT
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for each ¢ do
for0 <i<mndo
SIG(i,c) = ¢
end for
end for
for each row r do
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, ¢), hi(r))
end for
end if
end for
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE

Row || S1 |89 | S3 | Sa||lz+1 modb | 3z+1 mod5H

W= O
S = O O
e s R s Wl )
_— 0 = O
[ R =l
=SOSR N
WO N e~

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
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COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
h; {O, ey M — 1} —
{0,...m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*IC]

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ..., m}"*ICl
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for each c do
for0<i<mndo
SIG(i,c) = oo
end for
end for
for each row r do
for each column c do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, ¢), hi(r))
end for
end if
end for
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE

Row || S1 |89 | S3 | Sa||lz+1 modb | 3z+1 mod5H

W= O
S = O O
e s R s Wl )
_— 0 = O
[ R =l
=SOSR N
WO N e~

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
| Sy | S| Ss| S

o0 oo oo o @]

o0 o0 o0 0. @}

hy
ha

Signature matrix SIG: after initialization
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COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
h; {0, ey M — 1} —
{0,...m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*IC]

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ..., m}"*ICl
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for each ¢ do
for0 <i<mndo
SIG(i,c) = ¢
end for
end for
for each row r do
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i,c), hi(r))
end for
end if
end for
end for



COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
”li : {0, v, M — 1} —
{0,....m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*ICl

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ...,m}"*ICl
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for each c do
for0 <i<ndo
SIG(i,c) = c©
end for
end for
for each row » do
// Iteration 1: first row
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, c), hi(r))
end for
end if
end for
// End first row
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE
Row || S1 | Sy | S3 | Sa||lz+1 modb | 3z+1 mod5H

W= O
S = O O
oo = oo
_—O = O
[ R =
O e W R =
L O N e

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

First iteration: row # 0 has 1’s in S; and Sy, so put
SIGy1 = SIG14 = min{oo, 11 (0)} =0+ 1 mod 5=1,
SIGy = SIGyy = mln{oo7h2(0)} =3-04+1 mod5=1

55 | 8] 5
1 oo | oo 1
1 1

UNIVERSITAT i : i : :
BIELEERSLT Signature matrix after considering first row



COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
”li : {0, v, M — 1} —
{0,....m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*ICl

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ...,m}"*ICl
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for each c do
for0 <i<ndo
SIG(i,c) = c©
end for
end for
for each row » do
// Iteration 2: second row
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, c), hi(r))
end for
end if
end for
// End second row
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE
Row || S1 | Sy | S3 | Sa||lz+1 modb | 3z+1 mod5H

FIC I I )
S = O O
oo = oo
_—O = O
[ R =
=S JUR N
WO N e =

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Second iteration: row #1 has 1 in S3, so put
SIG13 = min{oo, (1)} =1+ 1 mod 5=2,
SIGy3 = min{oo, (1)} =3+ 1 mod 5 =4.

ENEAEAE?
1 00 2 1
1 00 4 1

ha
ha

UNIVERSITAT Signature matrix M after considering second row
BIELEFELD



COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
”li : {0, v, M — 1} —
{0,....m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*ICl

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ...,m}"*ICl
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for each c do
for0 <i<ndo
SIG(i,c) = c©
end for
end for
for each row » do
// Iteration 3: third row
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, c), hi(r))
end for
end if
end for
// End third row
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE

Row | S1 | S | S35 | Ss||x+1 mod5 |3z+1 modb5

SN JUR N )
O R, OO
oo~ OO
= )
O = = O -
[ RNSJUR NI
WO e

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Third iteration: row # 2 has 1’s in S, and Sy, so put

SIG1z = min{oo, 11 (2)} =2+ 1 mod 5=3,

SIG14 = min{SIGy4,h1(2)} = min(1,24+1 mod 5=3) =1,
SIGz = min{co,hp(2)} =6+1 mod 5 =2,

SIGy4 = min{SIGy4,h2(2)} = min(1,6 +1 mod 5=2) =1

UNIVERSITAT
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COMPUTING SIGNATURE MATRICES: EXAMPLE

Row | Sy | S | S| Ss||x+1 mod5 | 3z+1 modb5

ISONJUI N )
O, O O
oo~ OO
N = )
O = = O -
= ISOJUR N
WO e =

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

ENENENE?
1 3 2 1
1 2 4 1

Signature matrix after considering third row

w
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COMPUTING SIGNATURE MATRICES IN PRACTICE

for each c do
for0 <i<ndo

SIG(i,c) = oo
» Consider n hash functions end for
hi:{0,...m—1} — end for
{0,....m—=1},i=1,..,n foreachrov.vrdo
// Tteration 4: fourth row
» Letrand c index rows and for each column c do
columns in the characteristic if M(r,c) = 1 then
matrix M € {0, 1}m><|C| fori=1tondo
SIG(i,c) =
» So c also index columns, while min(SIG(i, c), hi(r))
i indexes rows in the signature end for
matrix SIG € {1, ...,m}"*ICl end if
end for

// End fourth row
end for
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COMPUTING SIGNATURE MATRICES: EXAMPLE

Row | Sy | S | S| Sy ||x+1 mod5 | 3z+1 mod?5b

W= O
O, O O
[ I e IS o Rl )
N = )
O = = O -
= ISOJUR N
WO e =

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Fourth iteration: SIGy; stays 1, SIGy; changes to 0, SIGy3 stays
2, SIGy3 changes to 0, SIG14 stays 1, SIGy4 changes to 0

ENESEA
1 3 2 1
0 2 0 0

hi
ho

UNIVERSITAT Signature matrix after considering fourth row
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COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
”li : {0, v, M — 1} —
{0,....m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*ICl

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ...,m}"*ICl
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for each c do
for0 <i<ndo
SIG(i,c) = c©
end for
end for
for each row » do
/ / Tteration 5: fifth (final) row
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, c), hi(r))
end for
end if
end for
// End fifth (final) row
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE

Row || S1 | Sy | S3 | Sa||lz+1 modb | 3z+1 mod5H

=W = O
S = O O
oo = oo
_—O = O
[ R =
=S JUR N
L O D e =

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

| 1 | Se | S| S
T[3]0]1
0|2]0|o0

Signature matrix after considering fifth row: final signature matrix

—
w

hy
o
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COMPUTING SIGNATURE MATRICES: EXAMPLE

—
w

| S1 | Se | Ss| Sy
T[3]0]1
02|00

Signature matrix after considering fifth row: final signature matrix

h1
ha

> Estimates for Jaccard similarity: SIM(Sy, S3) = ,SIM(S1,54) =1
» True Jaccard similarities: SIM(S1, S3) = %,SIM(Sl7 Ss4) = %

» Estimates will be better when raising number of hash functions
that is increasing number of rows of the signature matrix

UNIVERSITAT
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Minhashing

Speeding Up Computations
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BIELEFELD



SPEEDING UP MINHASHING: BASIC IDEA

» Minhashing is time-consuming, because iterating through all m
rows of M necessary, and m is large (huge!)

» Thought experiment:

» Recall: minhash is first row in permuted order with a 1

» Consider permutations 7 : {1, ...,m} — {1,...,m} forin < m
» Consider only examining the first i of the permuted rows
> Speed up of a factor of %

UNIVERSITAT
BIELEFELD



SPEEDING UP MINHASHING: JUSTIFICATION

» Minhashing is about estimates

» Minhashing on subsets of the real sets may provide good
estimates already?

» How do estimates behave more concretely?

UNIVERSITAT
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SPEEDING UP MINHASHING: EXAMPLE

Si Sy 53
0 0 0
0 0 0
0 0 1
0 1 1
1 1 1
1 1 0
1 0 0
0 0 0

Characteristic matrix for three
sets S1,5,,53. m = 8,m = 4.

UNIVERSITAT
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Truth SIM(S1, S2) = 1,SIM(S1, S3) =
1,SIM(S,S3) = &

Estimate for first four rows:
SIM(S51,5,) =0

Estimate for last four rows:
SIM(S1,S2) = 3 on average across
randomly picked hash functions

Ovwerall estimate (expected across randomly
picked hash functions): SIM(S1, S2) = 3,
Ok estimate for two hash functions



SPEEDING UP MINHASHING: MOTIVATION

» Continue thought experiment...

» Consider computing signature matrices by only examining
m < m rows in the characteristic matrix, and using permutations
m:{l,...,m} = {1,...,in}

» By the way: the chosen i1 rows need not be the first 1 rows oo as
symbol in the signature matrix SIG

UNIVERSITAT
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SPEEDING UP MINHASHING: ISSUES

» There may be columns where all first 7 rows contain zeroes

» Using the algorithm discussed previously, we will have oo
symbols in the signature matrix

5 5 | 8] 5
1 (o's) 2 1
1 oco | 4 1

Signature matrix M with co remaining (not referring to example from slide before)

hi
ha
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SPEEDING UP MINHASHING: ISSUES

» Situation: Much faster to compute SIG, but SIG(i, c) = co in some
places (how many? is this bad?)

» How to deal with that? Can we nevertheless work with only
m < m rows and compute sufficiently accurate estimates for the
Jaccard similarity of two columns?

UNIVERSITAT
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SPEEDING UP MINHASHING: MOTIVATION

Situation:
» Compute Jaccard similarities for pairs of columns, while possibly
» SIG(i,c) = oo for some (i, c)
» Algorithm for estimating Jaccard similarity:

> Row by row, by iterative updates,

» maintain count of rows a where columns agree

» maintain count of rows d where columns disagree
>

s a
Estimate SIM as !

Three cases:

1. Both columns do not contain oo in row: update counts as usual (either
a—a+lord—d+1

2. Only one column has oo in row:

» Let two columns be c1, ¢, and SIG(i, ¢;) = oo, but SIG(i, ¢2) # oot
» It follows that SIG(7, ¢1) > SIG(i, c2)
» So increase count of disagreeing rows by one (d — d + 1)

- univeditaBoth columns have oo in a row: unclear situation, skip updating counts
BIELEFELD



SPEEDING UP MINHASHING: MOTIVATION

Summary: One determines ;% as estimate for SIM(c1, c2)

» Counts rely on less rows than before. How reliable are they?

» However, since each permutation only refers to m < m rows, we
can afford more permutations

» The one makes counts less reliable, while the other compensates
for it

» Can we control the corresponding trade-off to our favour?

UNIVERSITAT
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SPEEDING UP MINHASHING: ISSUES TO RESOLVE

Let T be the set of elements of the universal set that correspond
to the initial . rows in the characteristic matrix.

When executing the above algorithm on only these 1 rows, we
determine

‘51 NS N T| @)
(51 U S) N T
as an estimate for the true Jaccard similarity }gi ~ gi} :

If T is chosen randomly, the expected value of (7) is the Jaccard
similarity SIM(S1, S2)

But: there may be some disturbing variation to this estimate

UNIVERSITAT
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SPEEDING UP MINHASHING: STRATEGY

Idea in practice using hash functions

>
>

Divide m rows into % blocks of 71 rows each

For each hash function i1 : {0, ...,in — 1} — {0, ...,m — 1}, compute
minhash values for each block of 71 rows

Yields % minhash values for a single hash function, instead of just one
Extreme: If % is large enough, only one hash function may be necessary

Possible advantage: By using all m rows, one balances out errors in the
particular estimates on only 1 of the m rows:

» The overall x of the type X rows are distributed across blocks of i1
rows

» Likewise, the overall y type Y rows are distributed across the
blocks
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SPEEDING UP MINHASHING: EXAMPLE

Si Sy 53
0 0 0
0 0 0
0 0 1
0 1 1
1 1 1
1 1 0
1 0 0
0 0 0

Characteristic matrix for three
sets S1,5,,53. m = 8,m = 4.

UNIVERSITAT
BIELEFELD

Truth SIM(S1, S2) = 1,SIM(S1, S3) =
1,SIM(S,S3) = &

Estimate for first four rows:
SIM(S51,5,) =0

Estimate for last four rows:
SIM(S1,S2) = 3 on average across
randomly picked hash functions

Ovwerall estimate (expected across randomly
picked hash functions): SIM(S1, S2) = 3,
Ok estimate for two hash functions



CURRENT STATUS: ISSUES STILL REMAINING

Estimating similarity for each pair of sets may be infeasible even
when using minhash signatures just because number of pairs is
too large

» Apart from parallelism nothing can help

» Question/ldea: Can we determine candidate pairs, and only

compute similarity for them, knowing similarity will be small
for all others?

Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)
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SUMMARY OF CURRENT STATUS

Docu-
ment

» Shingling: turning text files into sets = Done!

’\.‘ Locality-
Ml Sensitive

——1Shingling

w Hashing

The set Signatures:
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their

similarity

From mmds .org

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

» Minhashing: computing similarity for large sets & Done!

» Locality Sensitive Hashing: avoids O(N?) comparisons by
determining candidate pairs = next lecture!
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mmds.org

MATERIALS / OUTLOOK

» See Mining of Massive Datasets, chapter 3.1-3.3

» Asusual, see http://www.mmds.org/ in general for further
resources

» Next lecture: “Finding Similar Items II”
» See Mining of Massive Datasets 3.4-3.6
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http://www.mmds.org/

