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PERCEPTRON REVISITED

» Several half spaces (normal vectors) divide training data

» Question: any half space optimal, in a sensibly defined way?
» What to do if data cannot be separated (is non-separable)?
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SUPPORT VECTOR MACHINES: MOTIVATION

» Support vector machines (SVM’s) address to choose most
reasonable half space

» SVM'’s choose half space that maximizes the margin, i.e. the
distance between data points and half space
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SUPPORT VECTOR MACHINES: MOTIVATION

Support vector machines (SVM’s) address to choose most
reasonable half space

SVM'’s choose half space that maximizes the margin, i.e. the
distance between data points and half space

If separable, maximize distance between hyperplane and closest
data points

If not separable, minimize loss function that

» penalizes misclassified points
» penalizes points correctly classified but too close to hyperplane (to
a lesser extent)
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PERCEPTRON REVISITED

» Outer hyperplanes come very close to data points

» So, inner hyperplanes are likely the better choice
» = Try to make explicit!
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SEPARABLE DATA

Support
vectors

» Goal: Select hyperplane w - x + b = 0 that maximizes distance
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SEPARABLE DATA

Support
vectors

» Goal: Select hyperplane w - x + b = 0 that maximizes distance

» Intuition: The further away data from hyperplane, the more
certain their classification

» Increases chances to correctly classify unseen data (to generalize)
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SUPPORT VECTORS

Support
vectors

» Two parallel hyperplanes at distance y touch one or more of
support vectors

UNIVERSITAT
BIELEFELD




SUPPORT VECTORS

Support
vectors

» Two parallel hyperplanes at distance y touch one or more of
support vectors

» In most cases, d-dimensional data set has d + 1 support vectors
(but there can be more)
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PROBLEM FORMULATION: FIRST TRY

Let (x1,41), ..., (Xn, Yn) be a training data set, where
x; € Ry € {~1,+1},i=1,...,n

PROBLEM: By varying w, b, maximize ~ such that

yi(wxi+b) >~ foralli=1,..,n 1)
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PROBLEM FORMULATION: FIRST TRY

Let (x1,41), ..., (Xn, Yn) be a training data set, where
x; € Ry € {~1,+1},i=1,...,n

PROBLEM: By varying w, b, maximize ~ such that

yi(wxi+b) >~ foralli=1,..,n 1)

Issue
» Replacing w and b by 2w and 2b yields y;(2wx; + 2b) > 2+
» There is no optimal y
Problem badly formulated
Try again!
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PROBLEM FORMULATION: SOLUTION

» Data set (xi,1i),i = 1, ...,n as before; let H := {x | wx + b = 0} be the
hyperplane given by w and b.
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PROBLEM FORMULATION: SOLUTION
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PROBLEM FORMULATION: SOLUTION

» Data set (xi,1i),i = 1, ...,n as before; let H := {x | wx + b = 0} be the
hyperplane given by w and b.

> Let
d(xi, H) := min{d(x;,x) | wx + b = 0} 2)
be the distance between x; and H.
» Solution: Impose additional constraint: consider only combinations

w € R?, b € R such that for support vectors x

yi(wx+b) € {-1,+1} 3)
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PROBLEM FORMULATION: SOLUTION

Data set (x;,yi),i = 1, ..., n as before; let H := {x | wx + b = 0} be the
hyperplane given by w and b.

Let
d(xi,H) := mxin{d(x,-,x) | wx + b =0} 2)

be the distance between x; and H.

Solution: Impose additional constraint: consider only combinations
w € R?, b € R such that for support vectors x

yi(wx +b) € {~1,+1} @)
Good Formulation: By varying w, b, maximize «y such that
d(xi,H) >~ foralli=1,..,n “4)

and (3) applies
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ALTERNATIVE PROBLEM FORMULATION I

W/l wll

wX+b=+1
wx+b=0

wX +b=-1

» w,b,~y determined according to (3),(4)

UNIVERSITAT

BIELEFELD




ALTERNATIVE PROBLEM FORMULATION I

W/l wll

wX+b=+1
wx+b=0

wX +b=-1

» w,b,~y determined according to (3),(4)

UNIVERSITAT

> X is support vector on lower hyperplane, so by (3), wx, +b = -1
BIELEFELD



ALTERNATIVE PROBLEM FORMULATION I

W/l wll

wX+b=+1

wx+b=0
wX +b=-1

» w,b,~y determined according to (3),(4)
> X is support vector on lower hyperplane, so by (3), wx, +b = -1

» Let x; be the projection of x, onto upper hyperplane:

X1 =X + ZWL )

[[wll
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ALTERNATIVE PROBLEM FORMULATION II

That is, further, x; is on the hyperplane defined by wx + b =1,
meaning
wx;+b=1 (6)
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ALTERNATIVE PROBLEM FORMULATION II

That is, further, x; is on the hyperplane defined by wx + b =1,
meaning
wx;+b=1 (6)

Substituting x; = x; + ZWﬁ (5) into (6) yields

w

UNIVERSITAT
BIELEFELD



ALTERNATIVE PROBLEM FORMULATION II

That is, further, x; is on the hyperplane defined by wx +b =1,
meaning
wx;+b=1 (6)

Substituting x; = x; + 27% (5) into (6) yields

w
W (X + 27 ) b =1 @)
|[wl|
We obtain ww
wx; +b+2yv——=1 (8)

[|wll
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ALTERNATIVE PROBLEM FORMULATION II

That is, further, x; is on the hyperplane defined by wx +b =1,
meaning
wx;+b=1 (6)

Substituting x; = x; + 27% (5) into (6) yields

w
W (X +2y )+ b =1 7)
|[wl|
We obtain ww
wx; +b+2y—— =1 (8)
|[w]|

Because ww = ||w|[?, and by further regrouping, we conclude that

1

7= Tiwl ®
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ALTERNATIVE PROBLEM FORMULATION III

Let dataset (x;,yi),i = 1, ..., n be as before.

EQUIVALENT PROBLEM FORMULATION:

By varying w, b, minimize ||w|| subject to

yi(wx; +b) >1 foralli=1,..,n
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ALTERNATIVE PROBLEM FORMULATION III

Let dataset (x;,yi),i = 1, ..., n be as before.
EQUIVALENT PROBLEM FORMULATION:
By varying w, b, minimize ||w|| subject to

yi(wx; +b) >1 foralli=1,..,n (10)

Optimizing under Constraints
» Topic is broadly covered
» Many packages can be used

» Target function (||w||)? = Y, w? quadratic; well manageable
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Non Separable Data
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NON SEPARABLE DATA SETS

Misclassified

S wx+b=+1
Too close -~
to boundary
Situation:

wX+b=0

wX +b=-1

» Some points misclassified, some too close to boundary
= bad points
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NON SEPARABLE DATA SETS

Misclassified

S wx+b=+1
Too close -~
to boundary WX+b=0
Situation:

wX +b=-1

» Some points misclassified, some too close to boundary
= bad points
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» Non separable data: any choice of w, b yields bad points




NON SEPARABLE DATA: MOTIVATION

Misclassified

Too close .

to boundary

WX +b=+1
@

wx+b=0

wx +b=-1

» Situation: No hyperplane can separate the data points correctly
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NON SEPARABLE DATA: MOTIVATION

Misclassified  ~- _ O
N Te)

WX +b=+1

Too close " -~

to boundary wx+b=0

@ WX +b=-1

» Situation: No hyperplane can separate the data points correctly

» Approach:

» Determine appropriate penalties for bad points
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NON SEPARABLE DATA: MOTIVATION

Misclassified  ~- _ O
N Te)

WX +b=+1

Too close " -~

to boundary wx+b=0

@ WX +b=-1

» Situation: No hyperplane can separate the data points correctly

» Approach:

» Determine appropriate penalties for bad points
» Solve original problem, by involving penalties
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NON SEPARABLE DATA: MOTIVATION II

Let (x;,yi),i = 1,...n be training data, where
> X = (Xi1, s Xid),
> yie{-1,+1}

and let w = (wy, ..., wy).
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NON SEPARABLE DATA: MOTIVATION II

Let (x;,yi),i = 1,...n be training data, where
> X = (Xi1, s Xid),
> yie{-1,+1}

and let w = (wy, ..., wy).

Minimize the following function:

d n d
1
f(w,b) = EZZUJ»Z—kCZmaX{O,l —yi(zwjxij+b)} (11)
=1 i=1 j=1
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NON SEPARABLE DATA: MOTIVATION II

d n d
1
f(w,b) = EZw]z +C2max{0,1 —yi(zwjxl»]»_;_b)}
j=1 i=1 j=1
——
Seek minimal ||w|| Bad point penalty
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NON SEPARABLE DATA: MOTIVATION II

d n d
1
f(w,b) = 3 Zw]z + CZmaX{O7 1-— yi(z wjxi; + b)}
j=1 i=1 j=1
——
Bad point penalty

Seek minimal ||wl|
» Minimizing ||w|| equivalent to minimizing monotone function of ||w/|

1w Minimizing f seeks minimal ||w]|
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NON SEPARABLE DATA: MOTIVATION II

d

n d
f(w,b) = %wa +CZmaX{O,1—yi(ijxlj+b)}

j=1 i=1 j=1
——
Seek minimal ||wl| Bad point penalty

» Minimizing ||w|| equivalent to minimizing monotone function of ||w/|
1w Minimizing f seeks minimal ||w]|

» Vectors w and training data balanced in terms of basic units:

AWIP/2) _y ang Ot

= X;i
awi 8’(1},' g
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d

n d
f(w,b) = %wa +CZmaX{O,1—yi(ijxlj+b)}

j=1 i=1 j=1
——
Seek minimal ||wl| Bad point penalty

» Minimizing ||w|| equivalent to minimizing monotone function of ||w/|
1w Minimizing f seeks minimal ||w]|

» Vectors w and training data balanced in terms of basic units:
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= X;i
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» Cis aregularization parameter

» Large C: minimize misclassified points, but accept narrow margin
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NON SEPARABLE DATA: MOTIVATION II

d

n d
f(w,b) = %wa +CZmaX{O,1—yi(ijxlj+b)}

j=1 i=1 j=1
——
Seek minimal ||wl| Bad point penalty

» Minimizing ||w|| equivalent to minimizing monotone function of ||w/|
1w Minimizing f seeks minimal ||w]|

» Vectors w and training data balanced in terms of basic units:

AWIP/2) _y ang Ot

= X;i
awi 8’(1),‘ g

» Cis aregularization parameter

» Large C: minimize misclassified points, but accept narrow margin
» Small C: accept misclassified points, but widen margin
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NON SEPARABLE DATA: HINGE FUNCTION
Let the hinge function L be defined by

d
L(xi, y,) = maX{O, 1-— y:(z wjxij + b)}

j=1

max{0,1-z }

-2 -1 0 1 2 3
=y, (w.xX + D)
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=y, (w.xX + D)

» L(x;,yi) = 01iff x; on the correct side of hyperplane with sufficient
margin
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NON SEPARABLE DATA: HINGE FUNCTION
Let the hinge function L be defined by

d
L(xi,y:) = max{0,1 —y:(D>_ wjxj + b)} (12)

j=1

max{0,1-z }

-2 -1 0 1 2 3
=y, (w.xX + D)

» L(x;,yi) = 01iff x; on the correct side of hyperplane with sufficient
margin

» The worse x; is located the greater L(x;, y;)
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

d
L(x;,yi) = max{0,1 — ]/i(z wixij + b)}
j=1
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

d
L(x;,yi) = max{0,1 — ]/i(z wixij + b)}

j=1
Partial derivatives of hinge function:

oL {o if yi (7 wi +b) > 1

7= 13
Ow; —yixij otherwise (13)
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

d
L(x;,yi) = max{0,1 — ]/i(z wixij + b)}

j=1
Partial derivatives of hinge function:

oL {o if yi (7 wi +b) > 1

7= 13
Ow; —yixij otherwise (13)

Reflecting:

» If x; is on right side with sufficient margin: nothing to be done
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

d
L(x;,yi) = max{0,1 — ]/i(z wixij + b)}

j=1
Partial derivatives of hinge function:

oL {o if yi (7 wi +b) > 1

7= 13
Ow; —yixij otherwise (13)

Reflecting:
» If x; is on right side with sufficient margin: nothing to be done
» Otherwise adjust w; to have x; better placed
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GENERAL / FURTHER READING

Literature

» Mining Massive Datasets , Chapter 12, Section 3: http://
infolab.stanford.edu/~ullman/mmds/chl2.pdf
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http://infolab.stanford.edu/~ullman/mmds/ch12.pdf
http://infolab.stanford.edu/~ullman/mmds/ch12.pdf

Thank you for listening!
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