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distance between data points and half space

I If separable, maximize distance between hyperplane and closest
data points

I If not separable, minimize loss function that
I penalizes misclassified points
I penalizes points correctly classified but too close to hyperplane (to
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PERCEPTRON REVISITED

I Outer hyperplanes come very close to data points

I So, inner hyperplanes are likely the better choice

I + Try to make explicit!
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PROBLEM FORMULATION: FIRST TRY

Let (x1, y1), ..., (xn, yn) be a training data set, where
xi ∈ Rd, yi ∈ {−1,+1}, i = 1, ...,n.

PROBLEM: By varying w, b, maximize γ such that

yi(wxi + b) ≥ γ for all i = 1, ...,n (1)

Issue
I Replacing w and b by 2w and 2b yields yi(2wxi + 2b) ≥ 2γ

I There is no optimal γ

Problem badly formulated
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PROBLEM FORMULATION: SOLUTION

I Data set (xi, yi), i = 1, ..., n as before; let H := {x | wx + b = 0} be the
hyperplane given by w and b.

I Let
d(xi,H) := min

x
{d(xi, x) | wx + b = 0} (2)

be the distance between xi and H.
I Solution: Impose additional constraint: consider only combinations

w ∈ Rd, b ∈ R such that for support vectors x

yi(wx + b) ∈ {−1,+1} (3)

I Good Formulation: By varying w, b, maximize γ such that

d(xi,H) ≥ γ for all i = 1, ..., n (4)

and (3) applies
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ALTERNATIVE PROBLEM FORMULATION I

I w, b, γ determined according to (3),(4)
I x2 is support vector on lower hyperplane, so by (3), wx2 + b = −1
I Let x1 be the projection of x2 onto upper hyperplane:

x1 = x2 + 2γ
w
||w||

(5)
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ALTERNATIVE PROBLEM FORMULATION II

That is, further, x1 is on the hyperplane defined by wx + b = 1,
meaning

wx1 + b = 1 (6)

Substituting x1 = x2 + 2γ w
||w|| (5) into (6) yields

w · (x2 + 2γ
w
||w||

) + b = 1 (7)

We obtain
wx2 + b + 2γ

ww
||w||

= 1 (8)

Because ww = ||w||2, and by further regrouping, we conclude that

γ =
1
||w||

(9)
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ALTERNATIVE PROBLEM FORMULATION III

Let dataset (xi, yi), i = 1, ...,n be as before.

EQUIVALENT PROBLEM FORMULATION:

By varying w, b, minimize ||w|| subject to

yi(wxi + b) ≥ 1 for all i = 1, ...,n (10)

Optimizing under Constraints

I Topic is broadly covered

I Many packages can be used

I Target function (||w||)2 =
∑

i w2
i quadratic; well manageable
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+ bad points
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NON SEPARABLE DATA: MOTIVATION II

Let (xi, yi), i = 1, ...n be training data, where

I xi = (xi1, ..., xid),

I yi ∈ {−1,+1}

and let w = (w1, ...,wd).

Minimize the following function:

f (w, b) =
1
2

d∑
j=1

w2
j + C

n∑
i=1

max{0, 1− yi(

d∑
j=1

wjxij + b)} (11)
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︸ ︷︷ ︸
Bad point penalty

I Minimizing ||w|| equivalent to minimizing monotone function of ||w||
+ Minimizing f seeks minimal ||w||

I Vectors w and training data balanced in terms of basic units:

∂(||w||2/2)
∂wi

= wi and
∂(

∑d
j=1 wjxij + b)

∂wi
= xij

I C is a regularization parameter
I Large C: minimize misclassified points, but accept narrow margin
I Small C: accept misclassified points, but widen margin
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Let the hinge function L be defined by

L(xi, yi) = max{0, 1− yi(
d∑

j=1

wjxij + b)} (12)

I L(xi, yi) = 0 iff xi on the correct side of hyperplane with sufficient
margin

I The worse xi is located the greater L(xi, yi)
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=
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−yixij otherwise
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Reflecting:

I If xi is on right side with sufficient margin: nothing to be done

I Otherwise adjust wj to have xi better placed
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GENERAL / FURTHER READING

Literature
I Mining Massive Datasets , Chapter 12, Section 3: http://

infolab.stanford.edu/˜ullman/mmds/ch12.pdf

http://infolab.stanford.edu/~ullman/mmds/ch12.pdf
http://infolab.stanford.edu/~ullman/mmds/ch12.pdf


Thank you for listening!


