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Supervised Learning



SUPERVISED LEARNING

I There is a functional relationship

f
⇤ : Rd ! V

we would like to understand, or learn.
I Regression: V = R
I Classification: V = {1, ..., k}

I To learn it, we are given m data points

(xi, f
⇤(xi) = yi)i=1,...,m

that reflect this functional relationship.

Final goal: Predict f
⇤(x) well on unknown data points x.
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I Unsupervised Learning:

I Given unlabeled data

(xi)i=1,...,m

I Goal: Infer subgroups of data points
I Alternative Problem Formulation: Learn the probability

distribution
P(X)

that governs the generation of data points
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distribution

P(X, y) or P(y | X)

as a more general version of functional relationship
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SUPERVISED LEARNING: TRAINING

I The idea is to set up a training procedure (an algorithm) that
learns f

⇤ from the training data.
I Learning f

⇤ means to approximate it by f : Rd ! V

sufficiently well, where f 2 M for a certain class of
functions M.

I In most cases, f 2 M are parameterized by parameters w.
This means that we have to pick an appropriate choice of
parameters w for learning f

⇤.
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SUPERVISED LEARNING

I We need to determine a cost (or loss) function C where
C(f , f

⇤) measures how well f 2 M approximates f
⇤.

I Optimization: Pick f 2 M (by picking the right set of
parameters) that yields small (possibly minimal) cost
C(f , f

⇤)

I Generalization: Optimization procedure should address
that f is to approximate f

⇤ well on unknown data points.
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LINEAR REGRESSION
EXAMPLE: f : R ! R



PERCEPTRON
EXAMPLE: f : R2 ! {0, 1}

f R2 �! {0 = blue, 1 = red}

(x1, x2) 7!
(

1 x2 � x1 > 0
0 x2 � x1  0

(1)

¥0



SUPERVISED LEARNING
SUMMARY

We need to specify:
I How to set up the data being used for training
I A model class M, for example linear functions
I A cost function C(f , f

⇤) that evaluates the goodness of
f 2 M

I An optimization procedure that picks f such that C(f , f
⇤) is

minimal, or very small
I Keep in mind that f is to perform well on previously

unseen data
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SUPERVISED LEARNING
NOTATION

I The dataset is given by a design matrix X 2 Rm⇥d where m is
the number of data points and d is the number of features

I Each data point xi (a row in X) is assigned to a label yi that
reflects the true functional relationship yi = f

⇤(xi), where
further y = (y1, ..., ym) 2 V

m is the label vector.
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Generalization



ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X, y) into
I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I While training data is to pick the optimal set of parameters
(which specify elements from M), using training and validation

data in combination is for picking hyperparameters

I Hyperparameters can refer to choosing subsets of M. For
example, depth of a neural network, and widths of hidden
layers. They may also refer to specifications of cost function or
optimization procedure.

I (X(test), y(test)) are never touched during training.

I The final goal is to minimize the cost on the test data.
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ENABLING GENERALIZATION: MODEL
CAPACITY, UNDER- AND OVERFITTING

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

I Choose a class of models that has the right capacity

I Capacity too large: overfitting

I Capacity too small: underfitting
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ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

Let C(f , f
⇤) be the cost function. Let w = (w1, ...,wk) be the

parameters specifying elements of fw 2 M.

I Usually, C refers to only known data points. That is, C evaluates
as

C(f , f
⇤) =

X

i

C(f (xi), yi = f
⇤(xi)) (2)

where xi runs over all training data points.

I Add a regularization term to cost function, and choose fw that
yields minimal

C(fw, f
⇤) + �⌦(w) (3)

I � is a hyperparameter
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ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

I Prominent examples:
I L1 norm: ⌦(w) :=

P
i
|wi|

I L2 norm: ⌦(w) :=
P

i
w

2
i

I Rationale: Penalize too many non-zero weights
I Virtually less complex model, hence virtually less capacity
I + Prevents overfitting, yields better generalization
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ENABLING GENERALIZATION: OPTIMIZATION
EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.
I Early stopping: Stop the optimization procedure before cost

function reaches an optimum on the training data.
I Dropout: Randomly fix parameters to zero, and optimize

remaining parameters.



Prominent Supervised Learning Model Examples



LINEAR REGRESSION

I Design matrix X 2 Rm⇥d, label vector y 2 Rm

I Model class: Let w 2 Rd

fw = f (x;w) : Rd �! R
x 7! wTx (4)

I Remark: Note that the case wTx + b can be treated as a
special case to be included in M, by augmenting vectors xi

by an entry 1 (think about this...)
I Cost function (recall yi = f

⇤(xi))

C(f , f
⇤) :=

1
m
||(f (x1), ..., f (xm))� y||22 =

1
m

mX

i=1

(f (xi)� yi)
2

(5)

d

± ?wjxj
e- 1



LINEAR REGRESSION

I Design matrix X 2 Rm⇥d, label vector y 2 Rm

I Model class: Let w 2 Rd

fw = f (x;w) : Rd �! R
x 7! wTx (4)

I Remark: Note that the case wTx + b can be treated as a
special case to be included in M, by augmenting vectors xi

by an entry 1 (think about this...)
I Cost function (recall yi = f

⇤(xi))

C(f , f
⇤) :=

1
m
||(f (x1), ..., f (xm))� y||22 =

1
m

mX

i=1

(f (xi)� yi)
2

(5)



LINEAR REGRESSION

I Design matrix X 2 Rm⇥d, label vector y 2 Rm

I Model class: Let w 2 Rd

fw = f (x;w) : Rd �! R
x 7! wTx (4)

I Remark: Note that the case wTx + b can be treated as a
special case to be included in M, by augmenting vectors xi

by an entry 1 (think about this...)
I Cost function (recall yi = f

⇤(xi))

C(f , f
⇤) :=

1
m
||(f (x1), ..., f (xm))� y||22 =

1
m

mX

i=1

(f (xi)� yi)
2

(5)



LINEAR REGRESSION

Optimization
I Solve for

rwC(fw, f
⇤) = 0 (6)

to achieve a minimum. This yields the normal equations

w = (XTX)�1XTy (7)

I Global optimum if XTX is invertible
I Do this on training data (so X = X(train), y = y(train)) only.

Hope that cost on test data is small.
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NORMAL EQUATIONS

I Left: Data points, and the linear function y = w1x that
approximates them best

I Right: Mean squared error (MSE) depending on w1

I Remark on Perceptrons: Optimizing is different, but also
supported by a very easy optimization scheme (the perceptron

algorithm)
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NEAREST NEIGHBOR CLASSIFICATION

I Consider appropriate distance measure

D : Rd ⇥ Rd �! R+ (8)

I For unknown data point x, determine the closest given
data point

xi⇤ := argmin
i
(D(x, xi)) (9)

I Predict label of x as yi⇤
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SUPPORT VECTOR MACHINES

I Realization: From (7), write

wTx =
mX

i=1

↵ixTxi =
mX

i=1

↵ihx, xii (10)

I Replace h., .i by different kernel (i.e. scalar product) k(., .),
that is by computing h�(.),�(.)i for appropriate �

+ Seek ↵’s to maximize margin: still easy to optimize both
for regression and classification!
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I A perceptron divides the space into two half spaces

I Half spaces capture the two different classes

I Normal vector alternative description of half space
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I Several half spaces (normal vectors) divide training data

I Question: any half space optimal, in a sensibly defined way?

I What to do if data cannot be separated (is non-separable)?
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SUPPORT VECTOR MACHINES: MOTIVATION

I Support vector machines (SVM’s) address to choose most
reasonable half space

I SVM’s choose half space that maximizes the margin

I If separable, maximize distance between hyperplane and closest
data points

I If not separable, minimize loss function that
I penalizes misclassified points
I penalizes points correctly classified by too close to hyperplane (to

a lesser extent)
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I Goal: Select hyperplane w · x + b = 0 that maximizes distance �

I Intuition: The further away data from hyperplane, the more
certain their classification

I Increases chances to correctly classify unseen data (to generalize)
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SUPPORT VECTORS

I Two parallel hyperplanes at distance � touch one or more of
support vectors

I In most cases, d-dimensional data set has d + 1 support vectors
(but there can be more)
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PROBLEM FORMULATION: FIRST TRY

Let (x1, y1), ..., (xn, yn) be a training data set, where
xi 2 Rd, yi 2 {�1,+1}, i = 1, ..., n.

PROBLEM: By varying w, b, maximize � such that

yi(wxi + b) � � for all i = 1, ..., n (11)

Issue
I Replacing w and b by 2w and 2b yields yi(2wxi + 2b) � 2�

I There is no optimal �

Problem badly formulated + try harder!
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PROBLEM FORMULATION: SOLUTION

I Data set (xi, yi), i = 1, ..., n as before

I Solution: Impose additional constraint: consider only
combinations w 2 Rd, b 2 R such that for support vectors x

yi(wx + b) 2 {�1,+1} (12)

I Good Formulation: By varying w, b, maximize � such that

yi(wxi + b) � � for all i = 1, ..., n (13)

and (12) appliesGE.t.m+d+r-H-r-b://isthedista.eeof × , to the hypeeplaneH:={*fwrtb=0})



ALTERNATIVE PROBLEM FORMULATION I

I w, b, � determined according to (12),(13)
I x2 is support vector on lower hyperplane, so by (12),

wx2 + b = �1
I Let x1 be the projection of x2 onto upper hyperplane:

x1 = x2 + 2�
w

||w|| (14)
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ALTERNATIVE PROBLEM FORMULATION II
That is, further, x1 is on the hyperplane defined by wx + b = 1,
meaning

wx1 + b = 1 (15)

Substituting (14) into (15) yields

w · (x2 + 2�
w

||w|| ) + b = 1 (16)

By further regrouping, we obtain

wx2 + b + 2�
ww
||w|| = 1 (17)

Because ww = ||w||2, by further regrouping, we conclude that

� =
1

||w|| (18)
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ALTERNATIVE PROBLEM FORMULATION III

Let dataset (xi, yi), i = 1, ..., n be as before.

EQUIVALENT PROBLEM FORMULATION:

By varying w, b, minimize ||w|| subject to

yi(wxi + b) � 1 for all i = 1, ..., n (19)

Optimizing under Constraints

I Topic is broadly covered

I Many packages can be used

I Target function
P

i
w

2
i

quadratic; well manageable
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EXAMPLE

See Example 12.8

in mmds
. org

t

see link in last slide
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I Some points misclassified, some too close to boundary
+ bad points

I Non separable data: any choice of w, b yields bad points
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NON SEPARABLE DATA: MOTIVATION

I Situation: No hyperplane can separate the data points correctly

I Approach:

I Determine appropriate penalties for bad points
I Solve original problem, by involving penalties
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NON SEPARABLE DATA: MOTIVATION II

Let (xi, yi), i = 1, ...n be training data, where

I xi = (xi1, ..., xid),

I yi 2 {�1,+1}

and let w = (w1, ...,wd).

Minimize the following function:

f (w, b) =
1
2

dX

j=1

w
2
j
+ C

nX

i=1

max{0, 1 � yi(
dX

j=1

wjxij + b)} (20)
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NON SEPARABLE DATA: MOTIVATION II
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1
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w
2
j

| {z }
Seek minimal ||w||

+ C

nX

i=1

max{0, 1 � yi(
dX

j=1

wjxij + b)}

| {z }
Bad point penalty

I Minimizing ||w|| equivalent to minimizing monotone function of ||w||
+ Minimizing f seeks minimal ||w||

I Vectors w and training data balanced in terms of basic units:

@(||w||2/2)
@wi

= wi and
@(

P
d

j=1 wjxij + b)

@wi

= xij

I C is a regularization parameter
I Large C: minimize misclassified points, but accept narrow margin
I Small C: accept misclassified points, but widen margin
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

L(xi, yi) = max{0, 1 � yi(
dX

j=1

wjxij + b)} (21)

I L(xi, yi) = 0 iff xi on the correct side of hyperplane with sufficient
margin

I The worse xi is located the greater L(xi, yi)
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=
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0 if yi(
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�yixij otherwise

(22)

Reflecting:

I If xi is on right side with suffcient margin: nothing to be done

I Otherwise adjust wj to have xi better placed
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GENERAL / FURTHER READING

Literature
I Deep Learning, Chapter 5:

https://www.deeplearningbook.org/

I Mining Massive Datasets , Chapter 12, Section 3: http://
infolab.stanford.edu/˜ullman/mmds/ch12.pdf


