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SUPERVISED LEARNING

» There is a functional relationship
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we would like to understand, or learn.
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SUPERVISED LEARNING

» There is a functional relationship
foRISV

we would like to understand, or learn.
» Regression: V =R
» Classification: V = {1, ..., k}

» To learn it, we are given m data points

(i f*(xi) = Yi)i=1,..m
that reflect this functional relationship.

Final goal: Predict f*(x) well on unknown data points x.
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SUPERVISED VERSUS UNSUPERVISED LEARNING

» Unsupervised Learning:
» Given unlabeled data

» Goal: Infer subgroups of data points
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SUPERVISED VERSUS UNSUPERVISED LEARNING

» Unsupervised Learning:
» Given unlabeled data

» Goal: Infer subgroups of data points
» Alternative Problem Formulation: Learn the probability

distribution
P(X)

that governs the generation of data points
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SUPERVISED VERSUS UNSUPERVISED LEARNING

» Supervised Learning:
» Given labeled data
(X, Yi)i=1,...,m

» Goal: Learn functional relationship f* : R — V,
sty = f*(xi)

UNIVERSITAT
BIELEFELD



SUPERVISED VERSUS UNSUPERVISED LEARNING

» Supervised Learning:

» Given labeled data
(X0, Yi)i=1,....m
» Goul: Learn functional relationship f* : RY — V,
sty = f*(xi)
» Alternative Problem Formulation: Learn the probability
distribution
P(X,y) or P(y[X)

as a more general version of functional relationship
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EXAMPLE
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SUPERVISED LEARNING: TRAINING

» The idea is to set up a training procedure (an algorithm) that
learns f* from the training data.

> Learning f* means to approximate itby f : RY — V
sufficiently well, where f € M for a certain class of
functions M.
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SUPERVISED LEARNING: TRAINING

» The idea is to set up a training procedure (an algorithm) that
learns f* from the training data.

> Learning f* means to approximate itby f : RY — V
sufficiently well, where f € M for a certain class of
functions M.

» In most cases, f € M are parameterized by parameters w.

This means that we have to pick an appropriate choice of
parameters w for learning f*.
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SUPERVISED LEARNING

» We need to determine a cost (or loss) function C where
C(f,f*) measures how well f € M approximates f*.

» Optimization: Pick f € M (by picking the right set of
parameters) that yields small (possibly minimal) cost

Clf.f")
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SUPERVISED LEARNING

» We need to determine a cost (or loss) function C where
C(f,f*) measures how well f € M approximates f*.

» Optimization: Pick f € M (by picking the right set of
parameters) that yields small (possibly minimal) cost
Clf.f7)

» Generalization: Optimization procedure should address
that f is to approximate f* well on unknown data points.
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LINEAR REGRESSION
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PERCEPTRON
EXAMPLE: f:R* — {0,1}

Perceptron model
16 T T T T T T
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SUPERVISED LEARNING

SUMMARY

We need to specify:
» How to set up the data being used for training

UNIVERSITAT
BIELEFELD



SUPERVISED LEARNING

SUMMARY

We need to specify:
» How to set up the data being used for training

» A model class M, for example linear functions

UNIVERSITAT
BIELEFELD



SUPERVISED LEARNING

SUMMARY

We need to specify:
» How to set up the data being used for training
» A model class M, for example linear functions

» A cost function C(f,f*) that evaluates the goodness of
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SUPERVISED LEARNING

SUMMARY

We need to specify:
» How to set up the data being used for training
» A model class M, for example linear functions
» A cost function C(f,f*) that evaluates the goodness of
feM
» An optimization procedure that picks f such that C(f,f*) is
minimal, or very small
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SUPERVISED LEARNING

SUMMARY

We need to specify:
» How to set up the data being used for training
» A model class M, for example linear functions

» A cost function C(f,f*) that evaluates the goodness of
feM

» An optimization procedure that picks f such that C(f,f*) is
minimal, or very small

» Keep in mind that f is to perform well on previously
unseen data
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SUPERVISED LEARNING

NOTATION

> The dataset is given by a design matrix X € R"*? where m is
the number of data points and d is the number of features
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SUPERVISED LEARNING

NOTATION

> The dataset is given by a design matrix X € R"*? where m is
the number of data points and d is the number of features

» Each data point x; (a row in X) is assigned to a label y; that
reflects the true functional relationship y; = f*(x;), where
further y = (1, ...,ym) € V"™ is the label vector.
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Generalization
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TRAINING, TEST AND VALIDATION

» Split (X,y) into

> training data (X(rin) y(train))



ENABLING GENERALIZATION:

TRAINING, TEST AND VALIDATION

» Split (X,y) into

(train) , (train)

» training data (X
» validation data (X("al) yaby
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ENABLING GENERALIZATION

TRAINING, TEST AND VALIDATION

» Split (X,y) into

> training data (X(rn) y(train)
» validation data (X(Val)’y(val))
» test data (X(‘esﬂ,y(test))
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ENABLING GENERALIZATION: DATA

TRAINING, TEST AND VALIDATION

» Split (X,y) into
> training data (X(rn) y(train)

> validation data (X(*®) | y(vah)
» test data (X(‘esﬂ,y(test))

» While training data is to pick the optimal set of parameters
(which specify elements from M), using training and validation
data in combination is for picking hyperparameters
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ENABLING GENERALIZATION: DATA

TRAINING, TEST AND VALIDATION

» Split (X,y) into
> training data (X(rn) y(train)

> validation data (X(*®) | y(vah)
» test data (X(‘esﬂ’ y(test))

» While training data is to pick the optimal set of parameters
(which specify elements from M), using training and validation
data in combination is for picking hyperparameters

» Hyperparameters can refer to choosing subsets of M. For
example, depth of a neural network, and widths of hidden
layers. They may also refer to specifications of cost function or
optimization procedure.

> (X(test) yltesh)) are never touched during training.
» The final goal is to minimize the cost on the test data.
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ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING

Underfitting Appropriate capacity Overfitting
e®
- / > -
id L
To Ty To

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

» Choose a class of models that has the right capacity
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ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING

Underfitting Appropriate capacity Overfitting
e®
- / - = ®
id L
To Ty To

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

» Choose a class of models that has the right capacity
» Capacity too large: overfitting
» Capacity too small: underfitting
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

Let C(f,f*) be the cost function. Let w = (w1, ..., wy) be the
parameters specifying elements of f,, € M.

» Usually, C refers to only known data points. That is, C evaluates
as
C(f.f) = D Clf () yi = f* (x) )

where x; runs over all training data points.
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

Let C(f,f*) be the cost function. Let w = (wq, ...
parameters specifying elements of f,, € M.

, W) be the

» Usually, C refers to only known data points. That is, C evaluates
as
C(f.f) = D Clf () yi = f* (x) )

where x; runs over all training data points.

» Add a regularization term to cost function, and choose f,, that
yields minimal

Clfw,f7) + AQ2(w) ®)

» \is a hyperparameter
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ENABLING GENERALIZATION

REGULARIZATION

» Prominent examples:

> Ly norm: Qw) := >, |wj

> L, norm: Q(w) := >, w?
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

» Prominent examples:
» L norm: Q(w) =Y |w;l
> L, norm: Q(w) := >, w?

» Rationale: Penalize too many non-zero weights
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

» Prominent examples:
» L norm: Q(w) =Y |w;l
> L, norm: Q(w) := >, w?

» Rationale: Penalize too many non-zero weights
» Virtually less complex model, hence virtually less capacity

» = Prevents overfitting, yields better generalization
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ENABLING GENERALIZATION: OPTIMIZATION

EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.

» Early stopping: Stop the optimization procedure before cost
function reaches an optimum on the training data.

» Dropout: Randomly fix parameters to zero, and optimize
remaining parameters.
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Prominent Supervised Learning Model Examples
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LINEAR REGRESSION

» Design matrix X € R™*4 label vector y € R™
» Model class: Let w € R4

fo=fxw): RY — R
— T

X Wxizm\xj
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LINEAR REGRESSION

» Design matrix X € R™*4 label vector y € R™
» Model class: Let w € R4

fw=f(x;w): RY —
—

R
X T

w

(4)

X

» Remark: Note that the case w!x + b can be treated as a
special case to be included in M, by augmenting vectors x;
by an entry 1 (think about this...)
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LINEAR REGRESSION

» Design matrix X € R™*4 label vector y € R™
» Model class: Let w € R4

fw=f(x;w): RY —
—

R
X T

w

(4)

X

» Remark: Note that the case w!x + b can be treated as a
special case to be included in M, by augmenting vectors x;
by an entry 1 (think about this...)

» Cost function (recall y; = f*(x;))

CF.f) = I Ga), o f Con) 1B = Z(fxz—
6)
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LINEAR REGRESSION

Optimization
» Solve for
VWC(fW7f*) =0 (6)

to achieve a minimum. This yields the normal equations

w = (XTX)"XTy 7)
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LINEAR REGRESSION

Optimization
» Solve for
VWC(fW7f*) =0 (6)

to achieve a minimum. This yields the normal equations
w = (XTX)"XTy 7)

» Global optimum if X' X is invertible
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LINEAR REGRESSION

Optimization
» Solve for
VWC(fW7f*) =0 (6)

to achieve a minimum. This yields the normal equations
w = (XTX)"XTy 7)

» Global optimum if X' X is invertible
» Do this on training data (so X = X(rin) y — y(train)) only,
Hope that cost on test data is small.

UNIVERSITAT
BIELEFELD



NORMAL EQUATIONS

Linear regression example
3

-1.0 -0.5 0.0 05 1.0

xy

MSE (train)

0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20

Optimization of w

T T T

0.5 1.0 1.5

» Left: Data points, and the linear function y = w;x that

approximates them best

» Right: Mean squared error (MSE) depending on w;
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NORMAL EQUATIONS

Linear regression example Optimization of w
T T 1 T T 0.55 T T T
0.50
0.45
El
£ 040
> <
@ 0.35
~ 0.30
0.25
73 1 L | ! | 020 1 1 |
-1.0 =05 0.0 0.5 10 0.5 1.0 1.5
xy wi

» Left: Data points, and the linear function y = w;x that
approximates them best

» Right: Mean squared error (MSE) depending on w;

» Remark on Perceptrons: Optimizing is different, but also
supported by a very easy optimization scheme (the perceptron
algorithm)
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NEAREST NEIGHBOR CLASSIFICATION

» Consider appropriate distance measure
D:R* xR — R,

8)
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NEAREST NEIGHBOR CLASSIFICATION

» Consider appropriate distance measure
D:RxRT — Ry 8)

» For unknown data point x, determine the closest given
data point
x;+ := argmin;(D(x, x;)) 9)

» Predict label of x as ;-
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SUPPORT VECTOR MACHINES

» Realization: From (7), write

m m
wlx = Z X x; = Z a; (X, X;) (10)
i=1 i=1
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SUPPORT VECTOR MACHINES

» Realization: From (7), write
m m
wix = Z aixx; = Z a; (X, X;) (10)
i=1 i=1

» Replace (., .) by different kernel (i.e. scalar product) k(_, .),
that is by computing (¢(.), ¢(.)) for appropriate ¢
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SUPPORT VECTOR MACHINES

» Realization: From (7), write
m m
wix = Z aixx; = Z a; (X, X;) (10)
i=1 i=1

» Replace (., .) by different kernel (i.e. scalar product) k(_, .),
that is by computing (¢(.), ¢(.)) for appropriate ¢

1= Seek a’s to maximize margin: still easy to optimize both
for regression and classification!
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PERCEPTRON REVISITED

» A perceptron divides the space into two half spaces
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PERCEPTRON REVISITED

» A perceptron divides the space into two half spaces
» Half spaces capture the two different classes
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PERCEPTRON REVISITED

» A perceptron divides the space into two half spaces

» Half spaces capture the two different classes
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» Normal vector alternative description of half space




PERCEPTRON REVISITED
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» Several half spaces (normal vectors) divide training data
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PERCEPTRON REVISITED

UNIVERSITAT

» Several half spaces (normal vectors) divide training data
» Question: any half space optimal, in a sensibly defined way?
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PERCEPTRON REVISITED

» Several half spaces (normal vectors) divide training data

» Question: any half space optimal, in a sensibly defined way?
» What to do if data cannot be separated (is non-separable)?

UNIVERSITAT
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SUPPORT VECTOR MACHINES: MOTIVATION

» Support vector machines (SVM’s) address to choose most
reasonable half space

» SVM'’s choose half space that maximizes the margin
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SUPPORT VECTOR MACHINES: MOTIVATION

» Support vector machines (SVM’s) address to choose most
reasonable half space

» SVM'’s choose half space that maximizes the margin

» If separable, maximize distance between hyperplane and closest
data points
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SUPPORT VECTOR MACHINES: MOTIVATION

» Support vector machines (SVM’s) address to choose most
reasonable half space

» SVM'’s choose half space that maximizes the margin

» If separable, maximize distance between hyperplane and closest
data points

» If not separable, minimize loss function that

» penalizes misclassified points
» penalizes points correctly classified by too close to hyperplane (to
a lesser extent)
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SEPARABLE DATA

Support
vectors

» Goal: Select hyperplane w - x + b = 0 that maximizes distance
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» Intuition: The further away data from hyperplane, the more
certain their classification
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SEPARABLE DATA

Support
vectors

» Goal: Select hyperplane w - x + b = 0 that maximizes distance

» Intuition: The further away data from hyperplane, the more
certain their classification

» Increases chances to correctly classify unseen data (to generalize)
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SUPPORT VECTORS

Support
vectors

» Two parallel hyperplanes at distance vy touch one or more of
support vectors
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SUPPORT VECTORS

Support
vectors

» Two parallel hyperplanes at distance vy touch one or more of
support vectors

» In most cases, d-dimensional data set has d + 1 support vectors
(but there can be more)

UNIVERSITAT

BIELEFELD




PROBLEM FORMULATION: FIRST TRY

Let (x1,1), --., (Xu, Yn) be a training data set, where
X; € Rd,yi € {—1,—|—1},i= 1,...,n.

PROBLEM: By varying w, b, maximize y such that

yilwx; +b) >~ foralli=1,...,n (11)
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PROBLEM FORMULATION: FIRST TRY

Let (x1,1), --., (Xu, Yn) be a training data set, where
X; € Rd,yi € {—1,—|—1},i= 1,...,n.

PROBLEM: By varying w, b, maximize y such that

yilwx; +b) >~ foralli=1,..,n (11)

Issue
» Replacing w and b by 2w and 20 yields y;(2wx; + 2b) > 2y

» There is no optimal
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PROBLEM FORMULATION: FIRST TRY

Let (x1,1), --., (Xu, Yn) be a training data set, where
X; € Rd,yi € {—1,—|—1},i= 1,...,n.

PROBLEM: By varying w, b, maximize y such that

yilwx; +b) >~ foralli=1,..,n (11)

Issue
» Replacing w and b by 2w and 20 yields y;(2wx; + 2b) > 2y

» There is no optimal

Problem badly formulated = try harder!
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PROBLEM FORMULATION: SOLUTION

» Data set (x;,yi),i = 1,...,n as before

» Solution: Impose additional constraint: consider only
combinations w € R b € R such that for support vectors x

yi(wx+b) € {-1,+1} (12)
» Good Formulation: By varying w, b, maximize ~y such that

i (X_~|H> X‘—ﬁﬂq—h—b}ﬁ-r foralli=1,. (13)

where ACx ) - WH%L&CX\‘\C \07\‘&& C)g
S o dighece of AL o Hle &*P“

Hic3 % ] Wi §h o Oj

and (12) applies
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ALTERNATIVE PROBLEM FORMULATION I

Willwll

WwX+b=+1

wx+b=0
WX +b=-1

» w,b, vy determined according to (12),(13)
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Willwll

WwX+b=+1
wx+b=0
WX +b=-1

» w,b, vy determined according to (12),(13)
wx, +b=-1

» X is support vector on lower hyperplane, so by (12),



ALTERNATIVE PROBLEM FORMULATION I

Willwll

WwX+b=+1

wx+b=0
WX +b=-1

» w,b, vy determined according to (12),(13)

» X is support vector on lower hyperplane, so by (12),
wx, +b=-1

» Let x; be the projection of x, onto upper hyperplane:

X1 = X2 + 2’}/
UNIVERSITAT ‘ |W| |
BIELEFELD
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ALTERNATIVE PROBLEM FORMULATION II

That is, further, x; is on the hyperplane defined by wx + b =1,
meaning
wx;+b=1 (15)
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ALTERNATIVE PROBLEM FORMULATION II

That is, further, x; is on the hyperplane defined by wx + b =1,
meaning
wx;+b=1 (15)

Substituting (14) into (15) yields

w~(xz+27ﬁ)+b:1 (16)
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ALTERNATIVE PROBLEM FORMULATION II

That is, further, x; is on the hyperplane defined by wx + b =1,
meaning
wx;+b=1 (15)

Substituting (14) into (15) yields
w
w-(xp+2y—)+b=1 (16)
b B )
By further regrouping, we obtain

WW

[|wl]

wxp + b+ 2y =1 17)
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ALTERNATIVE PROBLEM FORMULATION II

That is, further, x; is on the hyperplane defined by wx + b =1,
meaning
wx;+b=1

Substituting (14) into (15) yields

w

By further regrouping, we obtain

WW

=1
[|wl]

wxp + b+ 2y

Because ww = ||w|[?, by further regrouping, we conclude that
1
Y= T
[wl|

UNIVERSITAT
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ALTERNATIVE PROBLEM FORMULATION III

Let dataset (x;,yi),i = 1, ..., n be as before.

EQUIVALENT PROBLEM FORMULATION:

By varying w, b, minimize ||w|| subject to

yilwx; +b) >1 foralli=1,..,n

UNIVERSITAT
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ALTERNATIVE PROBLEM FORMULATION III

Let dataset (x;,yi),i = 1, ..., n be as before.
EQUIVALENT PROBLEM FORMULATION:
By varying w, b, minimize ||w|| subject to

yilwx; +b) >1 foralli=1,..,n

Optimizing under Constraints
» Topic is broadly covered
» Many packages can be used

> Target function >, w? quadratic; well manageable

UNIVERSITAT
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EXAMPLE
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NON SEPARABLE DATA SETS

Misclassified

S wx+b=+1
Too close -~
to boundary
Situation:

wX+b=0

wX +b=-1

» Some points misclassified, some too close to boundary
= bad points
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NON SEPARABLE DATA SETS

Misclassified

S wx+b=+1
Too close -~
to boundary WX+b=0
Situation:

wX +b=-1

» Some points misclassified, some too close to boundary
= bad points

UNIVERSITAT
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» Non separable data: any choice of w, b yields bad points




NON SEPARABLE DATA: MOTIVATION

Misclassified

Too close .

to boundary

WX +b=+1
@

wx+b=0

wx +b=-1

» Situation: No hyperplane can separate the data points correctly
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NON SEPARABLE DATA: MOTIVATION

Misclassified  ~- _ O
N RN

WX +b=+1

Too close " -~

to boundary wx+b=0

@ WX +b=-1

» Situation: No hyperplane can separate the data points correctly

» Approach:

» Determine appropriate penalties for bad points
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NON SEPARABLE DATA: MOTIVATION

Misclassified  ~- _ O
N RN

WX +b=+1

Too close " -~

to boundary wx+b=0

@ WX +b=-1

» Situation: No hyperplane can separate the data points correctly

» Approach:

» Determine appropriate penalties for bad points
» Solve original problem, by involving penalties
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NON SEPARABLE DATA: MOTIVATION II

Let (x;,yi),i = 1,...n be training data, where
> X = (Xi1, s Xid),
> yie{-1,+1}

and let w = (wy, ..., wy).
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NON SEPARABLE DATA: MOTIVATION II

Let (x;,yi),i = 1,...n be training data, where
> X = (Xi1, s Xid),
> yie{-1,+1}

and let w = (wy, ..., wy).

Minimize the following function:

d n d
1
f(w,b) = 5 Z w]2 +C Z max{0,1 — yi(z wixij +b)}  (20)
=1 i=1 =1
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NON SEPARABLE DATA: MOTIVATION II

d n d
1
f(w,b) = EZw]z +C2max{0,1 —yi(zwjxl»]»_;_b)}
j=1 i=1 j=1
——
Seek minimal ||w]| Bad point penalty
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NON SEPARABLE DATA: MOTIVATION II

d n d
1
f(w,b) = 3 Zw]z + CZmaX{O7 1-— yi(z wjxi; + b)}
j=1 i=1 j=1
——
Bad point penalty

Seek minimal ||wl|
» Minimizing ||w|| equivalent to minimizing monotone function of ||w/|

1w Minimizing f seeks minimal ||w]|
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NON SEPARABLE DATA: MOTIVATION II

d

n d
f(w,b) = %wa +CZmaX{O,1—yi(ijxlj+b)}

j=1 i=1 j=1
——
Seek minimal ||wl| Bad point penalty

» Minimizing ||w|| equivalent to minimizing monotone function of ||w/|
1w Minimizing f seeks minimal ||w]|

» Vectors w and training data balanced in terms of basic units:

AW/ _y ang Ot

= X;i
awi 8’(1},' g
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NON SEPARABLE DATA: MOTIVATION II

d

n d
f(w,b) = %wa +CZmaX{O,1—yi(ijxlj+b)}

j=1 i=1 j=1
——
Seek minimal ||wl| Bad point penalty

» Minimizing ||w|| equivalent to minimizing monotone function of ||w/|
1w Minimizing f seeks minimal ||w]|

» Vectors w and training data balanced in terms of basic units:

AW/ _y ang Ot

= X;i
awi c’)w,- g

» Cis aregularization parameter

» Large C: minimize misclassified points, but accept narrow margin
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NON SEPARABLE DATA: MOTIVATION II

d

n d
f(w,b) = %wa +CZmaX{O,1—yi(ijxlj+b)}

j=1 i=1 j=1
——
Seek minimal ||wl| Bad point penalty

» Minimizing ||w|| equivalent to minimizing monotone function of ||w/|
1w Minimizing f seeks minimal ||w]|

» Vectors w and training data balanced in terms of basic units:

AW/ _y ang Ot

= X;i
awi c’)w,- g

» Cis aregularization parameter

» Large C: minimize misclassified points, but accept narrow margin
» Small C: accept misclassified points, but widen margin
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NON SEPARABLE DATA: HINGE FUNCTION
Let the hinge function L be defined by

d
L(xi, y,) = maX{O, 1-— y:(z wjxij + b)}

j=1

max{0,1-z }

-2 -1 0 1 2 3
=y, (w.xX + D)
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NON SEPARABLE DATA: HINGE FUNCTION
Let the hinge function L be defined by

d
L(xi, y,) = maX{O, 1-— y:(z wjxij + b)}

j=1

max{0,1-z }

-2 -1 0 1 2 3
=y, (w.xX + D)

» L(x;,yi) = 01iff x; on the correct side of hyperplane with sufficient
margin
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NON SEPARABLE DATA: HINGE FUNCTION
Let the hinge function L be defined by

d
L(xi,y;) = max{0,1 —y:(D>_ wjxy + b)} 1)

j=1

max{0,1-z }

-2 -1 0 1 2 3
=y, (w.xX + D)

» L(x;,yi) = 01iff x; on the correct side of hyperplane with sufficient
margin

» The worse x; is located the greater L(x;, y;)
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

d
L(x;,yi) = max{0,1 — ]/i(z wjxij + b)}
j=1
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

d
L(x;,yi) = max{0,1 — ]/i(z wjxij + b)}

j=1
Partial derivatives of hinge function:

oL {o if yi (7 wi +b) > 1

= _ 22
ow; —yix;j otherwise @2)
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

d
L(x;,yi) = max{0,1 — ]/i(z wjxij + b)}

j=1
Partial derivatives of hinge function:

oL {o if yi (7 wi +b) > 1

= _ 22
ow; —yix;j otherwise @2)

Reflecting:

» If x; is on right side with suffcient margin: nothing to be done
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

d
L(x;,yi) = max{0,1 — ]/i(z wjxij + b)}

j=1
Partial derivatives of hinge function:

oL {o if yi (7 wi +b) > 1

= _ 22
ow; —yix;j otherwise @2)

Reflecting:
» If x; is on right side with suffcient margin: nothing to be done
» Otherwise adjust w; to have x; better placed
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GENERAL / FURTHER READING

Literature
» Deep Learning, Chapter 5:
https://www.deeplearningbook.org/

» Mining Massive Datasets , Chapter 12, Section 3: http://
infolab.stanford.edu/~ullman/mmds/chl2.pdf
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